

Jerash University

Faculty of Pharmacy Department of Pharmaceutical Sciences

(Course Syllabus)

Subject Name	Credit Hours	Course No.	Prerequisite
Pharmaceutical Biotechnology	3	1101333	1101332

Coordinator Name	Lecturer/s	Room No.	E-mail	Office Hours	Lecture time
Dr. Haitham Tumah	Dr. Haitham Tumah	403	<u>haithamtu</u> <u>mah@yaho</u> <u>o.com</u>	Check the schedule	M+W 08:00-09:30

Course Objectives:

Upon successful completion of this course the students should be able to:

- 1. develop an appreciation of recombinant DNA technology and explain the principles that form the basis for this technology.
- 2. describe the common methods and applications of biotechnology with regards to synthesis of therapeutic agents and gene therapy
- 3. acknowledge both sides of the ethical implications of biotechnology

Course Description:

• The course will provide demonstrations of the structure and function of DNA, RNA, chromosomes, and genes.

• This course also provides a definition and an introduction to biotechnology and its application in a variety of pharmaceutical, medical, clinical and science disciplines. Topics covered include various techniques in biotechnology, microbiology techniques, DNA techniques and their applications in the manufacturing of biopharmaceuticals and biomedical research. Examples of real-world applications will be included. It also describes the use of genetically engineered products to improve human health.

Intended Learning Outcomes :

Successful completion of this course should lead to the following learning outcomes :

- The information passed from parents to offspring is coded in DNA molecules.
- Genes are segments of DNA molecules. Inserting, deleting, or substituting DNA segments can alter genes. An altered gene may be passed on to every cell that develops from it.
- Biotechnology has contributed to health improvement in many ways, but its cost and application have led to a variety of controversial social and ethical issues.
- The rationale and theory behind common techniques in the biotechnology field and use them to

- o solve problems routinely encountered in the biotech industry.
- How the immune system works and how this influences the development of recombinant DNA therapeutics
- Modern therapeutics derived from the application of genetic techniques are often difficult to produce and handle but are highly specific for their biological sites of activity.

Course Contents :

Week	Topics	topic details	Chapter in textbook
1.	Introduction	Definition, Timeline, application	Chapter 1
	From DNA to proteins	A. Prokaryotes and eukaryotes macromolecules	Chapter 2
		Nucleic acids structure	
2.	From DNA to proteins	B. DNA replication	Chapter 2
		Replication process	
3.	From DNA to proteins	C. Genetic code	Chapter 2
		D. Transcription	
		E. Translation	
4.	From DNA to proteins	F. Regulation of gene expression	Chapter 2
		 Prokaryotic gene expression 	
		Eukaryotic gene expression	
5.	Recombinant DNA	A. Cutting and joining DNA	Chapter 3
	technology	B. Separating restriction fragments and visualizing DNA	
6.	Recombinant DNA	C. DNA cloning	Chapter 3
	technology	D. Cloning vectors	
7.	Recombinant DNA	E. Cell transformation	Chapter 3
	technology	F. Constructing and screening library	
8.	Recombinant DNA	G. Southern blot hybridization	Chapter 3
	technology	H. Polymerase chain reaction	
		I. DNA sequencing	
9.	Microbial biotechnology	A. Over view about microial biotechnology and industrial	Chapter 5
		fermenters gene	
	Animal biotechnology	B. Transfer methods in animals	
		C. Transgenic animals and their application	Chapter 7
10.	Genomics and beyond	Human genome project	Chapter 9
11.	Medical Biotechnology	A. Gene therapy	Chapter 10
		B. Clinical trials	
12.	Medical	C. Recent gene therapy success	Chapter 10
	Biotechnology	D. New approaches to gene therapy	
13.	Medical	E. Virotherapy	Chapter 10
	Biotechnology	F. Stem cells	
14	Medical Biotechnology	G. Vaccines	Chapter 10
		H. Tissue engineering	
15.	Medical Biotechnology	I. Xenotransplantation	Chapter 10
		Product of biotecnology	Chapter 19
16.	FINAL EXAMIN	ATION WEEK	

Grade Distribution :

Assessment	Grade	Date
- First Exam	20	
- Second Exam	20	
- Assignments (reports, quizzes, homeworks, participation, conduct)	20	

* маке-ир exams wii de ojjerea jor valla reasons. 11 may de aljjereni jrom regular exams in content ana jormal.

Main Reference: Biotechnology An Introduction. Susan R. Barnum. Second Edition. 2005

Other References:

- DaanJ A Crommelin and Robert D Sindelar, Pharmaceutical Biotechnology. Second edition2005
 Tortora-Funk-Case, Microbiology, An Introduction- 11th edition 2013
 - 3. Pharmaceutical Dosage Form and Drug Delivery System. Loyd V. Allen Jr. 2014_C 26