*EF_Syll_*0902511

Faculty of Engineering Civil Engineering Department

Jerash Private University

Course Syllabus

Course ID	0902511								
Course Title	Microelectronic								
Prerequisite	0902312								
Time & Date									
Coordinator									
Instructor	Assoc. Prof. Dr. Head of Communication and electronics Department								
Office hours	Mon 8:30 – 11:30am & Tue 9:00-11:00 am								
Course Description	MOSFET transistor modeling, Basic IC elements, types of inverters and logic circuits, their dynamic & static performances, Construction & design of submicron logic circuits, Application to VLSI circuits.								
Course Objectives	-Understand the characteristics of digital electronics.								
	-Design CMOS & NMOS.								
	-Study modeling & design of MOSFET.								
	-Study stages VLSI technology.								
	-Understand the processes of integrated-circuit fabrication.								
	-Study principles & some kinds of field programmable gate arrays (FPGAs).								
Course Outcomes	After successfully completing this course, the students should be able to: (a) An ability to apply knowledge of and								
	(b) An ability to design and conduct experiments, to analyze								
	and interpret data								
	(c) An ability to design a system, component, or process to								
	meet desired needs								
	(d) An ability to function on multi-disciplinary teams								
	program outcomes (e) An ability to identify, formulate, and solve								
	engineering problems								

	Assignments & short reports
	Industrial Visit
	Internet
	Computer
	Project
	Homework
	Lab
Course delivery	Tutorial
Course delivery	Lectures
	By Rave Kumar, isbn 813800415
	3. Optical communication
	By Gerd Keiser, isbn 0070334676
	2. optical fibre communication
	By Rao Mukunda, isbn 81710902
Course References	Optical communication
Course Text Book	By Harry Dutton, isbn 0130201413
Course Text Book	Understanding Optical communication
	Field Programmable Gate Arrays.
	(15)+(16)
	(12)+(13)+(14) Integrated-Circuit Fabrication
	(11) Second Exam
	(10)+(11) Very Large Scale Integration Systems
	MOS Modeling & Design
	First Exam (7)+(8)+(9)
	(6)
	CMOS Logic Design.
	(2)+(3)+(4) Digital Electronics Characterization (5)+(6)
_	(1) Introduction.
Course Topics	
	necessary for engineering practice
	skills, and modern engineering tools
	(k) An ability to use the techniques,
	(j) A knowledge of contemporary issues
	life-long learning
	(i) A recognition of the need for, and an ability to engage in
	of engineering solutions in a global and societal context
	(h) The broad education necessary to understand the impact
	(g) An ability to communicate effectively
	responsibility

	2 exams @ 20% each
	Final exam 50%
Updated	Dr. Saad 27/9/2009

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO12
CO1											
CO2											
CO3											
CO4											
CO5											
CO6											
CO7											
CO8											
CO9											

	a	b	С	D	e	f	g	h	i	j	K
CO1											
CO2											
CO3											
CO4											
CO5											
CO6											
CO5 CO6 CO7											
CO8											
CO9				·							

ABET a-k Engineering and Technology program outcome

- (a) An ability to apply knowledge of mathematics, science, and engineering
- (b) An ability to design and conduct experiments, to analyze and interpret data
- (c) An ability to design a system, component, or process to meet desired needs
- (d) An ability to function on multi-disciplinary teams
- (e) An ability to identify, formulate, and solve engineering problems
- (f) An understanding of professional and ethical responsibility
- (g) An ability to communicate effectively
- (h) The broad education necessary to understand the impact of engineering solutions in a global and societal context
- (i) A recognition of the need for, and an ability to engage in life-long learning
- (j) A knowledge of contemporary issues
- (k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Plagiarism

Deliberate plagiarism is a serious act of academic misconduct. Students may be suspended from the University if they are found to have plagiarized their course work. Whether inadvertent or deliberate, plagiarism includes the following:

(a) word-for-word copying of sentences or whole paragraphs or presenting of substantial extracts from either paper-based or electronic sources the work or data of others that are published or

- unpublished (such as books, internal reports, and lecture notes or tapes) without clearly indicating their origin;
- (b) using very close paraphrasing of sentences or whole paragraphs without due acknowledgement in the form of reference to the original work;
- (c) submitting another student's work in whole or in part;
- (d) using of another person's ideas, work or research data without acknowledgement;
- (e) copying computer files, algorithms or computer code without clearly indicating their origin;
- (f) submitting work that has been written by someone else on the student's behalf; and submitting work that has been derived, in whole or in part, from another student's work by a process of mechanical transformation (e.g., changing variable names in computer programs