

College: Engineering Department: Civil

Course Title: Materials Science

Course No: CE304

Credit Hours: 2 Hours

Semester:

About The Course

Course Title: Materials Science Class:

Course No: CE304

Credit Hours: 2 Lecture Room:

Obligatory/ Optional: Obligatory

Text Book: Callister, Materials Scinece and Engineering, (6th Ed.)

McGraw-Hill Companies, Inc.

The Instructor

Name: Eng. Alaa' Falaileh Title: Full time lecturer

Office Tel:

Office No: 201 Office Hours:

E-maile: alaa.falaileh@jpu.edu.jo

Course Description

- 1. Introduction to materials science and engineering
- 2. Atomic structure and inter atomic bonding
- 3. Structure of crystalline solids
- 4. Imperfections in solids
- 5. Diffusion
- 6. Mechanical properties of metals
- 7. Dislocation and strengthening mechanism
- 8. Failure

- مقدمة في علوم و هندسة المواد
 التركيب الذري والترابط الذري
 هيكل المواد الصلبة البلورية
 عيوب في المواد الصلبة
 الانتشار
 - 6. الخواص الميكانيكية للمعادن
- 7. الازاحة واليةالمقاومة والتعزيز

8. الفشل

Course Objectives

- 1.Determine the indices of different crystal directions and planes in unit cell
- 2.Determine different point defects, dislocation, and interfacial defects in the material.
- 3. Compute the concentration in the steady state and non-steady state.
- 4.Determine the true stress, true strain, resilience, toughness, and ductility of different materials.
- 5. Determine the fatigue life, tritary creep of different materials under different loads.
- 6.Determine the indices of different crystal directions and planes in unit cell
- 7.Determine different point defects, dislocation, and interfacial defects in the material.
- 8. Compute the concentration in the steady state and non-steady state.
- 9. Determine the true stress, true strain, resilience, toughness, and ductility of different materials.

Learning Outcome

Making students aware of how language works to convey meaning as its basic function

Course Outline and Time schedule

Week	Course Outline				
First week	Introduction of Materials Science and Engineering				
	Why Study Materials Science and Engineering				
	Classification of Materials				
	Advanced Materials				
	Introduction of Atomic structure and inter atomic bonding				
2 nd week	Fundamental Concepts of atomic structure				
Z week	Electrons in Atoms				
	Atomic bonding in solids				
	Introduction of The Structure of Crystalline Solids				
3 rd week	Fundamental Concepts of structure of crystalline solids				
3 ¹³ week	Unit Cells				
	Metallic Crystal Structures				
4th 1_	Density Computations (Theory + Example)				
4 th week	Crystallographic points and directions (Example)				
	Introduction of Imperfections in Solids				
5 th week	Point defects				
	Vacancies and Self-Interstitials				
Cth 1-	Impurities in Solids				
6 th week	Specification of Composition				
	Dislocations–Linear Defects 88				
	Interfacial Defects				
7 th week	Review & Exam I				

Oth 1	Introduction of Diffusion		
8 th week	Diffusion Mechanisms		
9 th week	Steady-State Diffusion		
	Factors That Influence Diffusion		
	Introduction of Mechanical Properties of Metals		
	Concepts of Stress and Strain		
10 th week	Elastic deformation (Stress-Strain Behavior)		
	An elasticity		
	Elastic Properties of Materials		
	PLASTIC DEFORMATION Tensile Properties		
	True Stress and Strain		
11 th week	Elastic Recovery after Plastic Deformation		
	Compressive, Shear, and Torsional Deformation		
	Hardness		
12 th week	Review & EXAM II		
	property variability and design/safety factors		
	Introduction of Dislocations and Strengthening Mechanisms		
13 th week	Basic Concepts		
	Characteristics of Dislocations		
	Slip Systems		
	Strengthening by Grain Size Reduction		
	Solid-Solution Strengthening		
	Strain Hardening		
	recovery, recrystallization, and grain		

	growth
14 th week	Introduction of Failure
	Fundamentals of Fracture
	Ductile Fracture & Brittle Fracture
	Principles of Fracture Mechanics
	Impact Fracture Testing
	Fatigue
	Cyclic Stresses ,The S–N Curve ,Crack Initiation and
	Propagation, Factors That Affect Fatigue Life,
	Environmental Effects
	Creep
	Generalized Creep Behavior, Stress and Temperature Effects
15 th week	FINAL EXAM

Presentation methods and techniques

Methods of teaching varied according to the type of text, student and situation. The following techniques are usually used:

- 1- Lecturing with active participations.
- 2- Problem solving.
- 3- Cooperative learning.
- 4- Discussion.
- 5- Learning by activities.
- 6- Connecting students with different sources of information

Sources of information and Instructional Aids

For example: Computer ... power point ...etc.

- Transparencies
- Distance learning
- Library sources

Assessment Strategy and its tools

The assigned syllabus is assessed and evaluated Through: feed back and the skills that are acquired by the students

The tools:

- 1- Digonistic tests to identify the students level and areas of weakness
- 2- Formal (stage) evaluation
 - a) Class Participation
 - b) Ist Exam
 - c) 2nd Exam
 - d) Activity file

Tool & Evaluation

Tests are permanent tools & assessment, in addition to the activity file which contains curricular and the co-cussiculor activities, research, report papers and the active participation of the student in the lecture.

The following table clarifies the organization of the assessment schedule:

Test	Date	Grade
First Exam		20
2 nd Exam		20
Activities &	Students should be notified about	20
Participation	their marks	
Final Exam		40

Activities and Instructional Assignment

1- Practical assignments to achieve the syllabus objectives.
2

Regulations to maintain the teaching-Learning Process in the Lecture:

- 1- Regular attendance.
- 2- Respect of commencement and ending of the lecture time.
- 3- Positive relationship between student and teacher.
- 4- Commitment to present assignments on time.
- 5- High commitment during the lecture to avoid any kind of disturbance and distortion.
- 6- High seuse of trust and sincerity when referring to any piece of information and to mention the source.
- 7- The student who absents himself should submit an accepted excuse.
- 8- University relevant regulations should be applied in case the students behavior is not accepted.
- 9- Allowed Absence percentages is (%).

Internet websites 1...... 2...... 3......

References:

${f 1.}$ Engineering Materials Technology by Jacobs and Kilduff
2
3

Syllabus Classification

Objectives	Learning outcome	Assessment tools
1-		
2-		
3-		
4-		
5-		