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Spin-Peierls Dimerization of a s = 12 Heisenberg

Antiferromagnet on a Square Lattice
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Dimerization of a spin-half Heisenberg antiferromagnet on a square lattice is investigated for
several possible dimerized configurations, some of which are shown to have lower ground state
energies than the others. In particular, the lattice deformations resulting in alternate stronger
and weaker couplings along both the principal axes of a square lattice are shown to result in
a larger gain in magnetic energy. In addition, a ‘columnar’ configuration is shown to have a
lower ground state energy and a faster increase in the energy gap parameter than a ‘staggered’
configuration. The inclusion of unexpanded exchange coupling leads to a power law behavior
for the magnetic energy gain and energy gap, which is qualitatively different from that reported
earlier. Instead of increasing as δx, the wo quantities depend on δ as δν/| ln δ|. This is true both
in the near critical regime (0 ≤ δ ≤ 0.1) as well as in the far regime (0 ≤ δ < 1). It is suggested
that the unexpanded exchange coupling is as much a source of the logarithmic dependence as a
correction due to the contribution of umklapp processes. Staggered magnetization is shown to
follow the same δ-dependence in all the in the small δ-regime, while for 0 ≤ δ < 1,
it follows the power law δx.
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the ground state is amenable to dimerization, the spin-
Peierls transition will be unconditional.9, 12)

Such aspects as these have been studied extensively
in Heisenberg antiferromagnetic chains, as summarized
in Table I. This aspect has also been revealed by ex-
periments on quasi-one dimensional Heisenberg antifer-
romagnet CuGeO3.

13-15)

The situation in two-dimensions is a little more in-
volved because of the possibility of frustration due to
a competing antiferromagnetic second neighbor interac-
tion which can in principle destroy any LRO of the Neel
type as well as the possibility of dimerization. Much of
the study of two-dimensional Heisenberg antiferromag-
net has therefore remained focused on the destruction
of order by frustration.16) Moreover, the ground state
of a Heisenberg antiferromagnet on a square lattice at
zero temperature is Neel-ordered and a critical value of
spin-lattice coupling is required for the gain in magnetic
energy to affect a spin-Peierls transition.12, 17, 18) It is as-
sumed below that the spin-lattice coupling is above the
threshold, allowing for dimerization of the lattice. The
spin configuration is expected to remain Neel-like under
dimerization. This is true in the absence of either frus-
tration or quantum fluctuations which lead to a melting
of the Neel lattice.19)

The matter of frustration and quantum fluctuation
aside, a simple dimerization of a square lattice is inter-
esting in its own right because the lattice distortions can
take place in more than one way, each one of the pos-
sible configurations giving a different dependence of the
ground state energy on the dimerization parameter.
Figure 1 shows a few such configurations. Figure 1(a)
describes a columnar configuration caused by one longi-
tudinal static (π, 0) phonon, in which the nearest neigh-

H = J
∑
i

[1 + (−1)iδ]Si · Si+1 (1)

envisaging alternate stronger and weaker exchange bonds
J(1 + δ) and J(1 − δ). These bonds can, in fact, be
seen to result from the ansatz J(a) = J

a
.11) Thus when

the distance between a pair of spins decreases from a to
a(1− δ), the exchange coupling is taken to change from
J to approximately J(1 + δ).
Since 0 ≤ δ ≤ 1, and since elastic energies go typically
as δ2, therefore if the magnetic energy gain varies with
δ with an exponent less than 2 then in the limit δ → 0,
the gain would overwhelm the cost. In situations where

§1. Introduction

It is known that dimerization lowers the ground state
energy of a spin-half isotropic Heisenberg antiferromag-
net.1-10) In other words, the system stands to gain en-
ergy by such lattice deformations that render it dimer-
ized with alternate weaker and stronger bonds between
spins on neighboring sites. On the other hand the lattice
distortions cost energy and it is the net energy balance
that would determine whether the gain in magnetic en-
ergy ε(δ)− ε(0) is large enongh to affect the spin-Peierls
transition through dimerization. In a phenomenological
theory, this is usually seen in terms of an exponent show-
ing the dependence of magnetic and elastic energies on
the dimerization parameter δ; where 0 ≤ δ < 1. The
parameter δ describes the extent of lattice deformation,
i.e., it gives the displacement of the ith atom through
ui =

1
2 (−1)

iδ. The spin-dimer formation is usually de-
scribed by the Hamiltonian
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bor distances along the x-axis are taken to vary alter-
nately as a(1 + δ), while those along the y-direction re-
main a. Figure 1(b) shows a staggered configuration in
which the lattice deformation along the x-direction is al-
ternated as in Fig. 1(a), but the sequence of alternations
is itself alternated as one goes along the y-direction. It is
caused by a (π, π) phonon with polarization along the x-
axis.12) The between the earlier
of this configuration and ours is that we take into account
the elongation in the exchange bond along the y-direction
also, making it dependent upon the dimerization param-
eter δ. While the coupling along the x-direction is alter-
nately J

1−δ and
J
1+δ , it is uniformly

J√
(1+δ2)

along the

y-direction.
In contrast to the configurations (a) and (b), those in
Figs. 1(c), 1(d) and 1(e) allow for simultaneous dimer-
ization along both x- and y-directions in the plane. The
difference between (c) and (d) is the same as that be-
tweer (a) and (b): configuration (c) is columnar and (d)
is staggered. The former, caused by two phonons with
wavevectors (π, 0) and (0, π), is called plaquette config-
uration.12, 20) Figure 1(e) shows a much studied configu-
ration, caused by a longitudinal (π, π) phonon mode. In
these three configurations also the exchange couplings in
both x- and y-directions are δ-dependent. These five con-
figurations of a dimerized square lattice consisting of N
spins are therefore characterized by the following nearest
neighbor interactions.
Configuration (a)

Jx,λ =
J

(1 + λδ)
' J(1− λδ), λ = ±1

Jy = J.

That is to say, the dimerization is described by the
Hamiltonian

H = J

√
N∑
i,j

[
1

(1 + (−1)iδ)
Si,j · Si+1,j + Si,j · Si,j+1

]

(2)

Configuration (b)

difference considerations

Table I. Summary of the critical exponents for spin-Peierls transition in a Heisenberg chain determined by various methods.

Method Interval ε(δ)− ε(0) Exponent ∆(δ)−∆(0) Exponent

Random phase app.3) ≤ δ ≤ 1 δx x = /3 ∆x x = /3

Renormalization group4) ≤ δ ≤ 1 δx x = .53 ∆x x = .76

2-level RG5) ≤ δ ≤ 1 δx x = .78 ∆x x = .96

0.05 ≤ δ ≤ 0.1 δν/| ln(δ)| ν = .68
+0.13
−0.36

0.4 ≤ δ ≤ 0.5 δν/| ln(δ)| ν = .31± 0.02

Excitation spectrum6) ≤ δ ≤ 1 δx x = .36
+0.1
−0.2

Valence bond7) δ ≤ 0.05 δν/| ln(δ)| ν = /3 ∆x x ∼ 1

δ ≥ 0.05 δx x = .36
+0.1
−0.2

Finit size scaling8) 0 ≤ δ ≤ 0.1 δν/| ln(δ)| ν = .42± 0.01
0 ≤ δ ≤ 1 δx x = .34± 0.02

Exact diagonalization9) 0 ≤ δ ≤ 0.1 δν/| ln(δ)| ν = /3

DMRG10) δ ≤ 0.5 δx x = .252± 0.001 ∆x x = .667± 0.001

4

1

1

1

1

1

4

1

1
1

4

1

2

0

0

0

Jx,λ =
J

(1 + λδ)
' J(1− λδ), λ = ±1

Jy =
J

√
1 + δ2

' J

(
1−
δ2

2

)

and the Hamiltonian is given by

H = J

√
N∑
i,j

[
1

(1 + (−1)i+jδ)
Si,j · Si+1,j

+
1

√
1 + δ2

Si,j · Si,j+1

]
. (3)

Configuration (c)

Jx,λ = Jy,λ =
J

(1 + λδ)
' J(1− λδ), λ = ±1

with the Hamiltonian

H = J

√
N∑
i,j

[
1

(1 + (−1)iδ)
Si,j · Si+1,j

+
1

(1 + (−1)jδ)
Si,j · Si,j+1

]
. (4)

Configuration (d)

Jx,λ =
J

(1 + λδ)
' J(1− λδ), λ = ±1

Jy,λ =
J√

δ2 + (1 + λδ)2
' J

(
1− λδ −

(
1−
λ2

2

)
δ2
)

and the Hamiltonian

H = J

√
N∑
i,j

[
1

(1 + (−1)i+jδ)
Si,j · Si+1,j

+
1√

δ2 + (1 + (−1)jδ)2
Si,j · Si,j+1

]
. (5)
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relations can, in principle, be incorporated at will, and
which has been wn to give satisfactory results even in
the lower orders of perturbation.21, 22) We believe that
the coupled cluster method must be sufficiently good to
see which of the alternative configurations proposed here
is favored once a spin-Peierls transition sets in.

§2. Application of the Coupled-Cluster Method

In the coupled cluster method it is first necessary to
define a ket state starting from a model state |φ〉, which
in our case is the Neel state. The exact ground state |Ψ〉
of the system can then be postulated as

|Ψ〉 = eS |φ〉, (7)

S =
∑
n

Sn, (8)

with

Configuration (e)

Jx,λ = Jy,λ

=
J√

δ2 + (1 + λδ)2

' J

(
1− λδ −

(
1−
λ2

2

)
δ2
)
,

λ = ±1

and the Hamiltonian

H = J

√
N∑
i,j

1√
δ2 + (1 + (−1)i+jδ)2

× [Si,j · Si+1,j + Si,j · Si,j+1]. (6)

Some of the exchange couplings in eqs. (2)–(6) blow
up at δ = 1. Our analysis will therefore be confined to
0 ≤ δ < 1.
We would like to investigate the five configurations
in order to see (i) which of them gives the largest gain
in magnetic energy as the dimerization sets in, and (ii)
whether the use of untruncated exchange coupling leads
to a single power law valid for the entire range of δ.
A number of methods can be chosen for this pur-
pose. Spin wave theory, either modified through Taka-
hashi constraint of zero magnetization or a Hartree-Fock
approximated non-linear theory, is known to give sur-
prisingly good results for spin-half Heisenberg antiferro-
magnet. Or, a spin wave theory in the spinless fermionic
representation through Jordan-Wigner transformations
takes care of fermionic correlations among the s = 1

2
spins. Coupled cluster method (CCM) has also been ex-
tensively, and successfully, used for spin-half Heisenberg
antiferromagnet in one and two space dimensions.
The first two methods belong to the class of mean field
theories and hence are not expected to be very reliable
when it comes to determining critical exponents. The
coupled cluster method, on the other hand, is a pertur-
bation method in which increasingly higher order cor-

where S is the correlation operator defined for an N par-
ticle system as

sho

Sn =
∑
i1···in

Si1,···,inC
†
i1
C†i2 · · ·C

†
in
, (9)

and C†i is the creation operator defined with respect to
the model state. The ground state energy can then be
found as the eigenvalue of the Hamiltonian in the pro-
posed ground state

HeS |φ〉 = Ege
S |φ〉.

Taking inner product with 〈φ|e−S gives

Eg = 〈φ|e
−SHeS |φ〉.

The product e−SHeS can be written as a series of
nested commutators in the well-known expansion

e−SHeS = H + [H, S] +
1

2!
[[H, S], S] + · · · (10)

n 1 n

where in the present case the series terminates after the
fourth term.
It is usually easier to deal with the s = 1

2 Heisenberg
Hamiltonian by applying a rotation of 180◦ to the up
spin sublattice; Sx → −Sx, Sy → Sy and Sz → −Sz
such that all the spins in the lattice point down. It is
also convenient to replace the spin operators with Pauli
matrices: Sj = 1

2σ
j , j = x, y, z.21, 22) A general expres-

sion for the nearest neighbor spin Hamiltonian in 2D is
then

H = −
J

4

∑
l,ρ

(2(σ+l σ
+
l+ρ + σ

−
l σ
−
l+ρ) + σ

z
l σ
z
l+ρ), (11)

where ρ is a vector to the four nearest neighbors. Cor-
respondingly, the string operator Sn can now be defined
as

S2n =
1

(n!)2

∑
i1···in

∑
j1···jn

×S i1···in;j1···jnσ
+
i1
σ+i2 · · ·σ

+
in
σ+j1
σ+j2
· · ·σ+jn

, (12)

(σ−l )
2 = 0. Truncation of the summation up to the de-

sired level gives rise to different schemes of approxima-
tion. Taking interaction only between the spins on adja-
cent sites gives the so-called SUB2−2 scheme. Including
interactions with the second and fourth neighboring sites
gives what is termed as SUB2−4 scheme. And taking the
previous two schemes including interaction among the
four adjacent sites give us what has been termed as local
SUB4, or LSUB4 for short. Each one of these approx-
imations accounts for a different order of perturbation
calculation, and takes into account a different order of
inter-particle correlations. It has been noted that LSUB4
is a sufficiently good approximation for calculating the
ground state properties of a spin-half Heisenberg sys-
tem.22)

Consider a general case: a Hamiltonian which has four
different coupling constants for nearest neighbor interac-
tions in two space dimensions. It can be written as

where subscripts i and j distinguish between sites on
the two sublattices. We note that for spin half (σ+l )

2 =



〈σ−2i,jσ
−
2i+ν,jσ

−
2i+2ν,jσ

−
2i+3ν,je

−SHeS〉 = 0; ν = ±1

〈σ−i,2jσ
−
i,2j+νσ

−
i,2j+2νσ

−
i,j+3νe

−SHeS〉 = 0; ν = ±1 (16)

where S = S2 + S3 + S4. These equations translate into
the following twelve equations for the unknown parame-
ters:
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(a21 − 1− 2a3b1 − 2f)Jx,+1 + (2a1 + 2a1b1 − 2a3b3)Jx,−1 = 0

(2b1 + 2a1b1 − 2a3b3)Jx,+1 + (b
2
1 − 1− 2a1b3 − 2g)Jx,−1 = 0

(2a3 + 2a1a3)Jx,+1 + (2a3 − a
2
1 + 2a3b1 − f)Jx,−1 = 0

(2b3 − b
2
1 + 2a1b3 − g)Jx,+1 + (2b3 + 2b1b3)Jx,−1 = 0

(−2a3b1 + 2a1f + a3b
2
1 − a1a3b1)Jx,+1 + (f − a

2
1 + 2b1f + a3g + 2a1a3b3)Jx,−1 = 0

(g − b21 + 2a1g + b3f + 2a3b1b3)Jx,+1 + (−2a1b3 + 2b1g + a
2
1b3 − a1b1b3)Jx,−1 = 0

(c21 − 1− 2c3d1 − 2h)Jy,+1 + (2c1 + 2c1d1 − 2c3d3)Jy,−1 = 0

(2d1 + 2c1d1 − 2c3d3)Jy,+1 + (d
2
1 − 1− 2c1d3 − 2l)Jy,−1 = 0

(2c3 + 2c1c3)Jy,+1 + (2c3 − c
2
1 + 2c3d1 − h)Jy,−1 = 0

(2d3 − d
2
1 + 2c1d3 − l)Jy,+1 + (2d3 + 2d1d3)Jy,−1 = 0

(−2c3d1 + 2c1h+ c3d
2
1 − c1c3d1)Jy,+1 + (h− c

2
1 + 2d1h+ c3l + 2c1c3d3)Jy,−1 = 0

(l − d21 + 2c1l + d3h+ 2c3d1d3)Jy,+1 + (−2c1d3 + 2d1l + c
2
1d3 − c1d1d3)Jy,−1 = 0

Setting all the coupling constants Jµ equal reduces the
number of equations from twelve to three and yields ex-
actly the same equations as obtained by others.21, 22) The
two sets of six equations each independently determines
the six coefficients contained in each of them. As ex-
pected, the equations are symmetric in some coefficients.
The twelve coefficients are to be evaluated by solving the
above coupled equations numerically for each of the con-
figurations separately by substituting appropriate values
of Jx,λ and Jy,λ.
To be able to calculate the energy gap between the
ground and the first excited states, we shall construct the
excited ket state |Ψe〉 in term of a linear excitation oper-
ator X, which, operating on the ground state |Ψ0〉, takes
the system to an excited state: |Ψe〉 =X|Ψ0〉 =XeS |φ〉.

sions for S2n. The ground state energy within the LSUB4
approximation comes out to be

εg = −
1

16
[Jx,+1(1 + 4a1) + Jx,−1(1 + 4b1)

+Jy,+1(1 + 4c1) + Jy,−1(1 + 4d1)] (15)

The coefficients a1, a2, · · · , l are obtained as solutions
of a set of coupled nonlinear equations. These equa-
tions arise from the fact that such matrix elements as
〈φ|Oe−SHeS |φ〉 are all zero when the operator O is any
product of creation operators, particularly if it is one
of the operator products in the correlation operator S
above.

〈σ−i,2jσ
−
i,2j+νe

−SHeS〉 = 0; ν = ±1, ±3

〈σ−2i,jσ
−
2i+ν,je

−SHeS〉 = 0; ν = ±1, ±3

H = −
1

4

√
N/2∑
i,j

∑
λ=±1

[Jx,λσ2i,j · σ2i+λ,j

+Jy,λσi,2j · σi,2j+λ]. (13)

Here i and j are the two components of the site indices
on a square lattice. The correlation operators in the
LSUB4 scheme are defined as

S2 =
∑
i,j

[a1σ
+
2i,jσ

+
2i+1,j + b1σ

+
2i,jσ

+
2i−1,j

+c1σ
+
i,2jσ

+
i,2j+1 + d1σ

+
i,2jσ

+
i,2j−1]

S3 =
∑
i,j

[a3σ
+
2i,jσ

+
2i+3,j + b3σ

+
2i,jσ

+
2i−3,j

+c3σ
+
i,2jσ

+
i,2j+3 + d3σ

+
i,2jσ

+
i,2j−3]

S4 =
∑
i,j

[
f

3∏
ν=0

σ+2i+ν,j + g
3∏
ν=0

σ+2i−ν,j

+h

3∏
ν=0

σ+i,2j+ν + l

3∏
ν=0

σ+i,2j−ν

]
(14)

In these equations, the coefficients a1, b1, etc., are var-
ious forms of the coefficient Si1···i ;j ···j in the expres-

X =
∑
n

Xn (17)

with

Xn =
∑
j1···jn

χj1···jnσ
+
j1
σ+j2
· · ·σ+jn

. (18)

The first excited state is obtained by the operator

X1 =
∑
j

χjσ
+
j (19)

where j can be any site of the two sublattices. It is easily
seen that the first excitation energy is

This operator is constructed as a linear combination of
products of creation operators22)
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(
−
1

2
+ b̃1b1 + ã1a1 + ã3a3 + b̃3b3 + b

2
1g̃ + b1a1f̃ + 2g̃g + 2f̃f

)
Jx,+1

+

(
ã1 + ã1b1 − ãa1 − 2f̃a1 + 2f̃ b1a1 + f̃a3b3 +

1

2
g̃b3b1

)
Jx,−1 = 0,

(
b̃1 + b̃1a1 − b̃3b1 − 2g̃b1 + 2g̃b1a1 + g̃b3a3 +

1

2
f̃a1a3

)
Jx,+1

+

(
−
1

2
+ ã1a1 + b̃1b1 + ã3a3 + b̃3b3 + f̃a

2
1 + g̃b1a1 + 2f̃f + 2g̃g

)
Jx,−1 = 0,

(−ã1b1 − b̃1b3 + ã3 + ã3a1 − 2f̃ b1 + f̃ b
2
1 − f̃ b1a1 + g̃b1b3)Jx,+1

+ (−ã1b3 + ã3 + ã3b1 + f̃ b3a1 + 2f̃ g)Jx,−1 = 0,

(−b̃1a3 + b̃3 + b̃3a1 + g̃b1a3 + 2g̃f)Jx,+1

+ (−b̃1a1 − ã1a3 + b̃3 + b̃3b1 − 2g̃a1 + g̃a
2
1 − g̃b1a1 + f̃a1a3)Jx,−1 = 0,

(−ã1 + 2f̃a1 + g̃b3)Jx,+1 +

(
−
1

2
ã1 + f̃ + 2f̃ b1

)
Jx,−1 = 0,

where i and j indicate vectors in the two sublattices re-
spectively. The first term in S̃2n ensures orthonormality
of the bra and ket state; i.e., 〈Ψ̃ |Ψ〉 = 〈φ|Ψ〉 = 〈φ|φ〉 = 1.
The bra state coefficients are found by putting the ma-
trix elements of the commutator of the Hamiltonian with
a string of creation operators in the states Ψ̃ and Ψ to
zero.

〈φ|S̃e−S [H, σ+i1σ
+
i2
· · ·σ+inσ

+
j1
σ+j2
· · ·σ+jn

]eS |φ〉 = 0,

n = 1, 2, 3, · · · (21)

Equations (21) form a set of coupled linear equations
for the bra coefficients S̃, with the ket state coefficients
already known. It is to be noted here that the series of
nested commutators in e−S [H, σ+i1 · · ·σ

+
jn
]eS terminates

after a finite number of terms.
The correlation operators in the LSUB4 scheme are:

S̃2 =
∑
i,j

[ã1σ
−
2i,jσ

−
2i+1,j + b̃1σ

−
2i,jσ

−
2i−1,j

+c̃1σ
−
i,2jσ

−
i,2j+1 + d̃1σ

−
i,2jσ

−
i,2j−1]

S̃3 =
∑
i,j

[ã3σ
−
2i,jσ

−
2i+3,j + b̃3σ

−
2i,jσ

−
2i−3,j

+c̃3σ
−
i,2jσ

−
i,2j+3 + d̃3σ

−
i,2jσ

−
i,2j−3]

S̃4 =
∑
i,j

[
f̃

3∏
ν=0

σ−2i+ν,j + g̃
3∏
ν=0

σ−2i−ν,j

+h̃

3∏
ν=0

σ−i,2j+ν + l̃

3∏
ν=0

σ−i,2j−ν

]
. (22)

In these equations, the coefficients ã1, b̃1, etc., are various
forms of the coefficient S̃i1···jn;j1···jn in the expressions
for s̃2n. In the LSUB4 scheme, the staggered magnetiza-
tion, given by

Mz = −
2

N

∑
i

〈σzi 〉,

where i runs over one sublattice only, becomes

Mz = 1− ã1a1 − b̃1b1 − ã3a3 − b̃3b3

−2f̃f − 2g̃g − c̃1c1 − d̃1d1

−c̃3c3 − d̃3d3 − 2h̃h− 2l̃l.

The bra state coefficients are determined from the fol-
lowing set of simultaneous equations:

εe =
1

8

(
1

2
+ 2a1 + 2b1 + 2a3 + 2b3

)
(Jx,+1 + Jx,−1).

(20)

The energy gap for a given δ is ∆(δ) = εe(δ) − |εg(δ)|.
We define gap parameter as D(δ) = ∆(δ) −∆(0). This
is the energy required to break a dimerized singlet pair
for a given δ.
To be able to calculate a quantity like staggered mag-
netization the need of defining the bra state arises. In
fact the bra state is not simply a conjugate of the ket
state defined in eq. (7). The ground wave func-
tion 〈Ψ̃ | corresponding to the ket state |Ψ〉 can be defined
as21, 22)

〈Ψ̃ | = 〈φ|S̃2ne
−S ,

where the correlation operator S̃ is built wholly out of
destruction operators of the Hamiltonian used. The need
of defining such operators comes from the fact that e−S

is not equal to eS†. In our case the correlation operator
is defines as

S̃2n = 1 +

N/2∑
n=1

s̃2n,

with

s̃2n =
1

(n!)2

∑
i1···in

∑
j1···jn

×S̃i1···in;j1···jnσ
−
i1
σ−i2 · · ·σ

−
in
σ−j1
σ−j2
· · ·σ−jn

,

bra state
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§3. Results

The ground state energy and magnetization can now
be calculated as functions of the dimerization parameter
δ. Previous calculations have invariably taken spin-spin
exchange couplings alternately as J(1 ± δ), which, as
mentioned above, can be taken as an expansion of the
interaction in eq. (2) to order δ, implying that the re-
sults are valid only in the critical regime δ → 0. We
notice in our calculations that if in eqs. (2)–(6) all the
expansions are terminated at the order of δ then the dis-
tinction between configurations (a) and (b) disappears.
On the other hand, if the expansion is taken to one order
higher, then there remains no way to distinguish between
configurations (c) and (d). We must therefore either go
to orders beyond δ2 in the expansion, or retain the inter-
actions in their unexpanded form. We do the latter. An
added advantage is that the results will then be valid in
the limit δ → 1.

3.1 Magnetic energy gain

Our calculations confirm that, like the chain, the
ground state energy of all the five configurations de-
creases with δ. This is shown in Fig. 2, where ε(δ)−ε(0)
is plotted against δ for the proposed configurations. This
conclusion is not new for some of the configurations in
Fig. 1.12, 18, 23-26) However, what is significant is that the
ground state energy goes down with δ more rapidly for
some configurations than others. In fact, Fig. 2 shows
that the δ-dependence is markedly different for the two
types of dimerized configurations: one in which dimer-
ization takes place only along one axis, and the other, in
which it occurs along both the directions. The rate of
decrease is significantly higher for the latter. Also, the
columnar configurations lead to a greater gain in mag-
netic energy than the staggered ones. It also shows that

the plaquette configuration of Fig. 1(c) is energetically
the most favorable state, as also noted earlier.12, 27) Par-
ticularly in the complete range of δ (0 ≤ δ < 1), the
plaquette configuration stands out as the most preferred
one, while there is hardly a discernible difference among
the configurations (a), (b) and (d).
In the critical regime of dimerization, the magnetic
energy gain fits with both power lows; δ2 as well as
δν/| ln δ|. However, in the full range of dimerization,
which is of most interest to us for the sake of universal-
ity in the power law, the energy gain fits only with the
logarithmic power law as shown in Fig. 2(c). Therefore,
we conclude that the δν/| ln δ| describes the system in
both regimes of dimerization. In fact, we can assign an
exponent with the denominator to make the logarithmic
correction more general. It was found that linear expo-
nent fits satisfactory with the energy gain obtained by
CCM for a dimerized square lattice.
Configuration (e) is peculiar in the sense that δ = 1

2
is a special point for it; the shorter bond length is sym-
metric about this point, having a minimum value of 1√

2
.

At this point the distortions give rise to a rectangular
lattice with sides

√
2 and 1√

2
. The energy gain increases

with δ up to δ = 1
2 , and then goes down.

It is worth pointing out here that the much sim-
pler mean field methods of spin wave theory—either in
the bosonic representation through Holstein-Primakoff
trans-formations, or in the fermionic representation
through Jordan-Wigner transformations—yield very
similar results. This has been checked by us separately.
Earlier calculations on the spin-Peierls instability in a
2D system gave varied results on the critical exponents.
Monte Carlo calculations of Tang and Hirsch12) on the
Hubbard model in the limit of infinite on-site repulsion U
found for the cases corresponding to our configurations
(a), (b), (c) and (e) that the magnetic energy gain fol-
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lowed a simple power law behavior and increased as δ2.
Their cases are different from ours in the sense that cou-
plings alternated as J(1 ± δ), and were taken constant
along the y-direction in the case (b). Feiguin et al.18)

obtained similar results for configurations (a) and (e) in
the Schwinger boson representation. Quantum Monte
Carlo calculations of Katoh and Imada26) showed that
in chains that are coupled by an antiferromagnetic cou-
pling the exponent of the magnetic energy gain in the
δ → 0 limit is 1.
Our results are expected to be different from these

because instead of J(1±δ), we take the unapproximated
exchange coupling J(a) = J

a
. Our CCM calculations

show that the gain in magnetic energy does not vary
with δ as a simple power law; it varies as δν/ ln δ| for all
the five configurations in the range 0 ≤ δ ≤ 0.1 with the
exponent ν = 1.5. In the complete range 0 ≤ δ < 1 also,
they show the same dependence on δ with ν = 1 for the
configurations (a)–(d).
It is interesting to note that earlier results show, as
summarized in Table I, that the dimerization of an anti-
ferromagnetic chain also varies as δν/| ln δ|, but only in

Fig. 1. Five configurations for the dimerization of a square lat-
tice. (a) a columnar configuration caused by a longitudinal (π, 0)
static phonon. The nearest neighbor coupling along the horizon-
tal direction alternates between J(1−δ) and J(1+δ), while that
along the vertical direction remains J . (b) a staggered configu-
ration caused by a (π, π) static phonon with polarization along
x-direction. Like (a), the dimerization occurs along one direc-
tion only, but the sequence of alternate couplings itself alternates
along the other direction. The coupling along the vertical direc-
tion is also taken to vary with δ. (c) Dimerization along both

the directions, caused by (π, 0) and (0, π) phonons, making a
plaquette of four nearest neighbor spins. (d) Again dimerization
along both the directions, but taken staggered along the vertical
direction. (e) Another staggered dimerization that is caused by
a longitudinal (π, π) phonon. Chains are formed with strong
bonds. The square lattice deforms to a rectangular lattice with
this mode for δ = 1/2. Open circles represents the undimerized
square lattice, while the filled ones show the dimerized lattice.
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the small δ regime (the near critical regime). There, the
factor of 1/| ln δ| is brought about the renormalization
group calculations as a correction due to umklapp pro-
cesses.7, 28) our CCM results, however, show that even
in chains this may be the case when the exchange cou-
plings in the dimerized state are taken as J

1±δ , instead of
the approximated J(1± δ). We find for chains that the
best fit is obtained with δν/| ln δ| in the entire range of
δ rather than only in the range of small δ. With the full
exchange couplings, the exponent for the chain comes
out to be ν = 2

3 for 0 ≤ δ < 1, and ν = 1.3–1.6 for
0 ≤ δ ≤ 0.1. The latter gives a decent comparison with
the numbers in Table I.

3.2 The gap parameter
The δ dependence of the energy gap parameter D(δ)

in

Fig. 2. The gain in magnetic energy ε(δ) − ε(0) as dimerization
sets in with increasing δ for the five configurations; (a) in the
range 0 ≤ δ ≤ 0.1, and (b) in 0 ≤ δ < 1. Figure (c) shows
energy gain vs δ for the plaquette configuration along with δ2

and δν/| ln δ| fittings. It is clear from the Figure that the loga-
rithmic correction fits better than the simple power law in the
full dimerized regime.

Fig. 3. Dependence of the energy gap parameter D on δ for the

five dimerization configurations; (a) in the range 0 ≤ δ ≤ 0.1,
and (b) in 0 ≤ δ < 1.
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3.3 Staggered magnetization

Our CCM calculations in the LSUB4 approximation
give staggered magnetization for the un-dimerized square
latticeM(δ = 0) = 0.2965, within about 2% of the exact
value of 0.303. As dimerization sets in, magnetization
decreases in all the configurations we have chosen, as
shown in Fig. 4, in agreement with the earlier results for
configuration (a).25) This is also the case for the entire
range of δ(0 ≤ δ < 1), except the case of configuration
(e) for which the magnetization rises again after δ = 1√

2
.

The CCM calculations show that for all the five con-
figurations, the magnetization also varies as δν/| ln δ| in
the small δ regime with the exponent ν = 1.5, exactly as
the energy gain and the gap parameter. However in the
regime 0 ≤ δ < 1, M exhibits a simple power law depen-
dence: M ∼ δx with x between .65 and .75, as shown
in Table II. Configuration (e) has a distinctly different
behavior in this regime.
To summarize, we have studied the spin-Peierls dimer-
ization of a spin-half Heisenberg antiferromagnet on
a square lattice taking unapproximated exchange cou-
plings based on the ansatz J(a) = J

a
, and assuming that

the spin-lattice coupling is above the threshold to affect
the spin-Peierls transition. We have included different
possibilities of dimerization. The ground state energy as
well as staggered magnetization decrease continuously
with increasing dimerization for all the proposed config-
urations. Of the five configurations, those with dimeriza-
tion taking place simultaneously along both the principal
square axes have markedly lower ground state energies
and magnetization than those with dimerization along
only one of the axes, in agreement with the result of Lieb
and Nachtergaele.27) Also, those with columnar dimer-
ization have consistently lower energies than those with
the staggered dimerization. The plaquette configuration
stands out as the most favored mode of dimerization.
The energy gap parameter also corroborates the above
conclusions. It has also been shown that the magnetic
energy gain as well as the gap parameter and staggered
magnetization depend upon the dimerization parameter
δ as δν/| ln δ|, at least in the δ → 0 regime, the | ln δ|

in

nar configurations again appear as preferred modes of
dimerization over the staggered configurations for hav-
ing higher values of the gap parameter in the region of
small δ.

defined above for the five configurations is shown in
Fig. 3, showing greater stabilization of the dimerized
state with increasing δ. We also find that, like the mag-
netic energy gain, the gap paramete D increases with δ
as δν/| ln δ| in the small δ regime for all the five config-
urations with ν = 1.5. The configurations (a)–(d) also
have the same dependence on δ in the entire range of δ
with ν = 1.
The difference between the dimerization of a square
lattice along only one direction (Figs. 1(a) and 1(b)) and
along both the directions (Figs. 1(c), 1(d) and 1(e)) is
again markedly brought out in Fig. 3. Also the colum-

Fig. 4. Staggered magnetization varying with δ for the five dimer-
ization configurations; (a) in the range 0 ≤ δ ≤ 0.1, and (b) in
0 ≤ δ ≤ 1.

Table II. Exponents obtained by the CCM method for magnetic
energy gain, energy gap and magnetization for the five dimerized
square lattice configurations. The logarithmic power law goes as
δν/| ln(δ)| in the five configurations for both energy gain and
gap parameter for both small and full δ. While in the staggered
magnetization the
logarithmic law is valid for δ → 0, but it obeys a simple power
law in the full dimerization limit; δ → 1. Values of ν are listed
in the following table.

Configuration Interval ε(δ)− ε(0) ∆(δ)−∆(0) M(0)−M(δ)

(a) ≤ δ ≤ 0.1 ν = .5 ν = .5 ν = .5
0 ≤ δ < 1 ν = .0 ν = .0 ∼ δ0.65

(b) ≤ δ ≤ 0.1 ν = .5 ν = .5 ν = .5
0 ≤ δ < 1 ν = .0 ν = .0 ∼ δ0.75

(c) ≤ δ ≤ 0.1 ν = .5 ν = .5 ν = .5
0 ≤ δ < 1 ν = .0 ν = .0 ∼ δ0.75

(d) ≤ δ ≤ 0.1 ν = .5 ν = .5 ν = .5
0 ≤ δ < 1 ν = .0 ν = .0 ∼ δ0.65

(e) ≤ δ ≤ 0.1 ν = .5 ν = .5 ν = .5
0 ≤ δ < 1 ∼ δ0.1
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