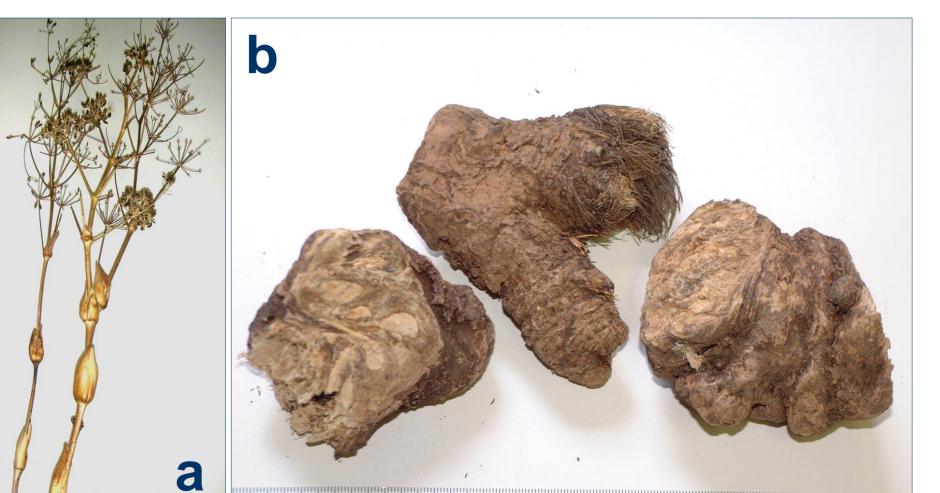
UNIVERSITAT DE BARCELONA Universitat Autònoma Università di Corsica Pasquale

Composition and antifungal activity of the essential oil of the root of Ferula hermonis

Al-Ja'fari AH^{1,2}, Vila R¹, Freixa B¹, Costa J², Tomi F³, Cañigueral S¹

Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; ² Departament de Farmacologia, de Terapèutica i de Toxicologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Unitat Docent Hospital Universitari Germans Trias i Pujol, Badalona, Spain; ³ Équipe Chimie et Biomasse, UMR CNRS 6834, Université de Corse. Ajaccio, France.

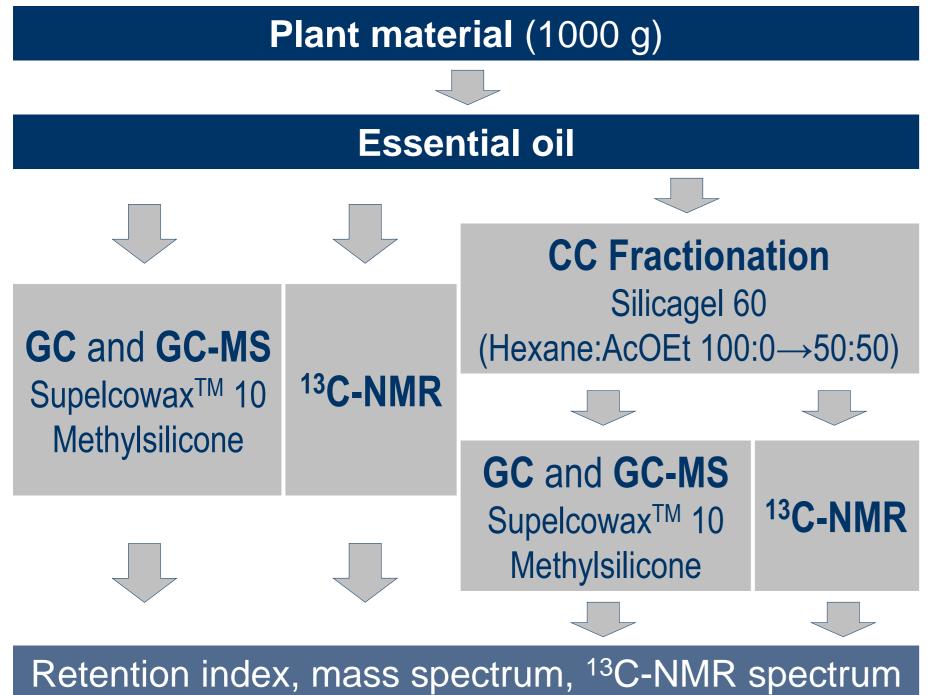

Introduction

The dried root of *Ferula hermonis Boiss*. (Umbelliferae) (**Figure 1**), a plant growing in the mountains between Lebanon and Syria, locally known as Zallouh root, is used in folk medicine to treat erectile dysfunction [1].

Results

The composition of the essential oil is shown in **Table 1** and its antifungal activity in **Table 2**.

Table 1. Essent	sential oil of Ferula hermonis root.					
Components	%	Components	%			
α-Pinene*	43.4	γ-Cadinene*	1.7			


In the present work, the composition and the antifungal activity of its essential oil are described.

Material and methods

Plant material

Air-dried Ferula hermonis roots of were provided by The Jordanian Pharmaceutical Manufacturing Co. (Naor, Jordan).

Essential oil analysis.

		40.4	y-Caumene
	Camphene	0.2	δ-Cadinene*
	Hexanal	0.1	ar-Curcumene*
	β-Pinene*	1.4	<i>trans-</i> α-Bisabolene*
	Verbenene*	0.4	α-Cadinene*
	3-Carene*	0.4	Myrtenol*
	β-Myrcene	0.2	cis-Calamenene
	Limonene*	0.2	trans-Carveol*
	p-Cymene	0.2	trans-Calamenene*
	3,5-Nonadiyne*	4.4	Thymyl acetate
	a-Cubebene*	0.2	α-Calacorene*
	α-Copaene*	0.3	α-Copaene-11-ol
	Daucene*	0.4	Selina-3,7(11)-diene*
(α-Gurjunene	t	cis,trans-Farnesol
,	γ-Gurjunene	0.3	Eudesmol
	Aristolene*	0.2	Viridiflorol*
	Pinocarvone*	0.2	Epicubenol*
	<i>cis</i> -α-Bergamotene	t	<i>trans</i> -Daucen-8-en-4-β-ol*
i	<i>trans</i> -α-Bergamotene*	0.4	Germacradien-11-ol*
	β-Elemene	0.3	α-Bisabolol oxide B*
	β-Gurjunene*	0.1	Spathulenol*
•	Terpinen-4-ol*	t	β-Bisabolol*
	Aromadendrene*	1.2	α-Bisabolol oxide A
	Myrtenal*	0.3	T-Cadinol*
i	trans-Pinocarveol*	0.5	T-Muurolol*
(cis-Verbenol*	0.6	α-Bisabolol*
i	<i>trans</i> -β-Farnesene*	3.2	α-Cadinol*
i	trans-Verbenol*	1.9	β-Eudesmol
	β-Cubebene	t	Myristicin
•	γ-Muurolene*	t	Selin-11-en-4-α-ol*
	Ledene*	0.2	Cadinadien-8-ol*
	a-Terpineol*	t	10-Hydroxy-α-humulene*
	Selina-4,11-diene*	1.0	Jaeschkenadiol angelate*
	β-Selinene*	0.5	Jaeschkenadiol*
	a-Selinene*	0.4	Jaeschkenadiol benzoate*
(a-Muurolene*	0.3	p-Cymene-8-ol
	β-Bisabolene*	1.1	γ-Selinene
	Bicyclogermacrene*	1.0	Total identified

43.4	γ-Cadinene*	1.7
0.2	δ -Cadinene*	1.5
0.1	ar-Curcumene*	0.6
1.4	<i>trans-</i> α-Bisabolene*	0.5
0.4	α-Cadinene*	t
0.4	Myrtenol*	0.3
0.2	cis-Calamenene	t
0.2	trans-Carveol*	0.2
0.2	trans-Calamenene*	t
4.4	Thymyl acetate	t
0.2	α-Calacorene*	0.3
0.3	α-Copaene-11-ol	0.4
0.4	Selina-3,7(11)-diene*	t
t	cis,trans-Farnesol	0.4
0.3	Eudesmol	0.2
0.2	Viridiflorol*	0.1
0.2	Epicubenol*	t
t	<i>trans</i> -Daucen-8-en-4-β-ol*	t
0.4	Germacradien-11-ol*	t
0.3	α-Bisabolol oxide B*	1.0
0.1	Spathulenol*	1.1
t	β-Bisabolol*	t
1.2	α-Bisabolol oxide A	0.9

0.4

0.1

11.1

0.1

0.3

1.3

0.1

1.9

1.2

0.4

0.1

92.2

Figure 1. Ferula hermonis Boiss.: plant (**a**) and root (**b**). Discussion The roots of Ferula hermonis gave an essential oil yield of 1.5% (v/w). GC, GC-MS and ¹³C-NMR analysis of the total oil and the fractions obtained by CC allowed the identification of seventy five constituents, meaning more than 90% of the total sample (**Table 1**). From them, 54 identified compounds were sesquiterpenes, whereas only 19 monoterpenes.

The major constituent was α-pinene (43.3%), followed by α -bisabolol (11.1%), 3,5-nonadiyne (4.4%), β -farnesene (3.2%) and δ -cadinene (2%).

as

were

Identification of the constituents

Isolation and structure determination of 3,5-nonadiyne

Successive fractionation of the essential oil through silicagel 60 (0.035-0.070 mm) eluting with different gradient systems of hexane:AcOEt and final purification through Sephadex[®] LH-20 eluted with MeOH afforded the unknown compound **1** which represented 4.4% of the essential oil.

Structure elucidation of **1** was done using standard spectroscopic techniques, such as ¹H-RMN, ¹³C-RMN, DEPT, H,H-COSY, HSQC, HMBC, EI-MS and CI-MS. It was identified as 3,5-nonadiyne.

Compounds are listed by elution order in the polar column except the last two, which were only detected in the methylsilicone column.

¹ Identified by ¹³C-NMR analysis of the total oil and/or after fractionation. t: traces ($\leq 0.05\%$).

The unusual constituent 3,5-nonadiyne has only been reported twice before, in the essential oils from the roots of Selinum tenuifolium [3] and Cachrys ferulacea [4] (Apiaceace) where it reached percentages higher than 80%.

The essential oils from aerial parts of several *Ferula* sp. have been the object of previous works; however, only few reports on the composition of the volatile oil from the roots are available in the literature. In some of them, the main constituents were monoterpene hydrocarbons such as α - and β -pinene or 3-carene [5-7].

Results on the antifungal activity (**Table 2**) showed comparable values for the MIC and MFC of the essential oil (both, 157 μ g/ml) and α -pinene (142 μ g/ml) against *T*. *mentagrophytes.* No activity against the other strains was detected up to 2.5 mg/ml and 2.3 mg/ml. Research of other active constituents of the essential oil is being performed currently.

Compound 1: 3,5-Nonadiyne

Table 2. MIC and MFC (µg/ml) of the essential oil of *Ferula hermonis* root and α -pinene.

Antifungal activity

MIC and MFC values of the essential oil and its major constituent α -pinene were determined by an agar dilution assay following the method described in [2]. Fungi were provided by Colección Española de Cultivos Tipo (CECT, Valencia, Spain). Nystatin and amphotericin B were used as positive controls.

Acknowledgements

To AA Badwan (The Jordanian Pharmaceutical Manufacturing Co., Naor, Jordan) and TS EI-Thaher (ARAGEN Biotechnology, Naor, Jordan), for providing plant material.

Fun	Fungi	Essential oil <i>F. hermonis</i>		α-Pinene		Amphotericin B		Nystatin	
		MIC	MFC	MIC	MFC	MIC	MFC	MIC	MFC
Ar	า	na	na	na	na	4	0	2	0
Ai	f	na	na	na	na	2	2	4	4
Ρμ)	na	na	na	na	2	2	4	4
Тп	n	157	157	142	142	0.5	0.5	2	2
Cá	a	na	na	na	na	1	>16	2	>16
C	I	na	na	na	na	0.25	0.5	1	2
So	;	na	na	na	na	0.5	1	2	4

An: Aspergillus niger, Af: A. fumigatus, Pp: Penicillium purpurogenum, Tm: Trichophyton mentagrophytes, Ca: Candida albicans, CI: C. lactis-condensi, Sc: Saccharomyces cerevisiae, na: not active.

References

1. EI-Thaher, TS et al. (2001) Int J Impot Res 13: 247-51. **2.** Jorgengen JH *et al.* (1999). In Murray, PR et al. Manual of Clinical Microbiology, 7th Ed., ASM Press. Washington. 3. Dev, V et al. (1984) J Nat Prod 47: 904-5. 4. Dokovic, DD et al. (2004) Chem *Pharm Bull* 52(7): 853-4. **5.** Goryaev, MI *et al.* (1971) Izvest Akad Nauk Kazak SSR, Ser Khim 21: 49-53. 6. Du, N et al. (1989) Zhongguo Yaoke Daxue Xuebao 20: 164-6. 7. Rustaiyan, A et al. (2002) J *Essent Oil Res* 14: 286-7.