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Abstract: This paper introduces a novel soft computing technique, called the complex neutrosophic
soft expert relation (CNSER), to evaluate the degree of interaction between two hybrid models called
complex neutrosophic soft expert sets (CNSESs). CNSESs are used to represent two-dimensional
data that are imprecise, uncertain, incomplete and indeterminate. Moreover, it has a mechanism to
incorporate the parameter set and the opinions of all experts in one model, thus making it highly
suitable for use in decision-making problems where the time factor plays a key role in determining the
final decision. The complex neutrosophic soft expert set and complex neutrosophic soft expert relation
are both defined. Utilizing the properties of CNSER introduced, an empirical study is conducted on
the relationship between the variability of the currency exchange rate and Malaysian exports and the
time frame (phase) of the interaction between these two variables. This study is supported further
by an algorithm to determine the type and the degree of this relationship. A comparison between
different existing relations and CNSER to show the ascendancy of our proposed CNSER is provided.
Then, the notion of the inverse, complement and composition of CNSERs along with some related
theorems and properties are introduced. Finally, we define the symmetry, transitivity and reflexivity
of CNSERs, as well as the equivalence relation and equivalence classes on CNSESs. Some interesting
properties are also obtained.

Keywords: complex neutrosophic set; complex neutrosophic soft expert set; decision-making;
single-valued neutrosophic set; neutrosophic soft relation

1. Introduction

Zadeh [1] introduced the concept of the fuzzy set to represent uncertain data, which is abounding
in the real world, and it was extended by Atanassov [2] to the intuitionistic fuzzy set. These sets
have been applied to vague soft sets [3–5] and many real-life problems in uncertain and ambiguous
environment [6–8]. The words neutrosophy and neutrosophic were coined by Smarandache [9],
who later defined neutrosophic sets [10] as natural extensions of fuzzy and intuitionistic fuzzy
sets. In order to apply the neutrosophic set to real-life problems, its operators need to be specified.
Thus, the basic operations of the single-valued neutrosophic set (SVNS) were defined [11]. Subsequently,
the single-valued neutrosophic set was applied extensively in the multiple attribute decision-making
(MADM) methods of operational research such as TOPSIS [12], COPRAS [13], VIKOR [14], WASPAS [15],
MULTIMOORA [16], EDAS [17], TODIM [18] and others. Since Molodtsov [19] proposed the soft set,
hybrids of fuzzy and soft sets have been developed such as the fuzzy soft set [20], intuitionistic fuzzy
soft set [21], neutrosophic soft set [22], soft expert set [23], intuitionistic fuzzy soft expert set [24] and
single-valued neutrosophic soft expert set (SVNSES) [25].

Fuzzy set theory was then extended from the real to the complex field by Ramot et al. [26], which
progressed rapidly to the complex fuzzy logic [27] and complex intuitionistic fuzzy sets (CIFS) [28].
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Nevertheless, these sets do not have structures to handle imprecise, inconsistent, indeterminate and
incomplete data that are periodic in nature. Therefore, Ali and Smarandache [29] introduced the
complex neutrosophic set. In complex neutrosophic sets, each membership function is associated with
a phase term. This feature gives wave-like properties that could be used to describe constructive and
destructive interference depending on the phase value of an element, as well as its ability to deal
with indeterminacy.

However, the complex neutrosophic set lacks the adequate parameterization tool to facilitate
the representation of parameters, and it it does not have a mechanism to incorporate the opinion
of all experts in one model. Thus, the complex neutrosophic soft expert set (CNSES) is proposed to
provide a more adequate parameterization tool that can represent the problem parameters in a more
comprehensive and complete manner. It has also the added advantage of allowing the users to know
the opinion of all the experts in a single model without the need for any additional cumbersome
operations. This increases the validity of this model as most real-life situations deal with elements
and parameters that are subjective and biased and have the potential to be distorted and interpreted
differently by different parties.

In this paper, we introduce and study the various types of relations between CNSESs. A great
deal of researchers have studied the relations between fuzzy sets [30,31], fuzzy soft sets and their
generalizations [32–34]. However, the most significant shortcoming of these relations is their inability to
capture information pertaining to the time frame of the interaction between the parameters, which is a
very important component of most real-life situations. Motivated by these studies, we herein introduce
the complex neutrosophic soft expert relation (CNSER) for which the ranges of its membership
functions are represented in terms of complex numbers, which give it the ability to represent the
degree and the phase of the interaction between the elements of the CNSESs. CNSER is equipped
with adequate parameterization and created with the opinions of all experts. It also has the ability
to handle the imprecise, indeterminate, inconsistent and incomplete information that is captured by
the amplitude terms and phase terms of the complex numbers, simultaneously. A novel approach to
MADM problems based on CNSES is also introduced. This approach converts the CNSES to a SVNSES
using a practical and useful algorithm, which highlights the role of the time factor in determining the
final decision. The advantages of our models and the drawbacks of the current methods discussed
above served as the motivation for this paper.

There are four main contributions of this paper. Firstly, we introduce the concept of CNSES, which
combines the advantages of both the complex neutrosophic set and soft expert set. Secondly, we define
the concept of the Cartesian product of two CNSESs and then study the relation between these two
sets by establishing the concept of CNSERs. Thirdly, we use the CNSER together with a generalized
algorithm to determine the degree and the type of the influence of volatility of exchange rates on
the total exports of Malaysia and then deduce results that help to make more accurate economical
decisions in the future. This study is supported by a comparison among the proposed method and
other methods to reveal the superiority of our proposed method. Lastly, the concepts of inverse,
complement, composition, equivalence relation and equivalence classes were extended to the notion
of CNSER.

The organization of this paper is as follows. Section 2 provides a brief synopsis of the pertinent
literature where we review some background on neutrosophic and complex neutrosophic set.
The CNSES is also introduced in this section along with an illustrative example. Throughout Section 3,
we define the concept of the Cartesian product of two CNSESs. Subsequently, the concept of CNSERs
will be defined. Then, the CNSER is used to solve a MADM problem in the economy. We end this
section by making a comparison among CNSER and other existing models. In Section 4, we present
some operations on CNSER along with some theorems and propositions. Section 5, demonstrates the
equivalence relation and equivalence classes on CNSESs. In the final section, the conclusions of the
findings of the paper are stated. This section also provides suggestions for further research in CNSERs.
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2. Preliminaries

In this section, we recapitulate the concepts of neutrosophic and complex neutrosophic sets and
present an overview of the operation structures of the complex neutrosophic model that are relevant to
the work in this paper. The CNSES is also introduced.

Definition 1 ([10]). Let U be a universe of discourse. A neutrosophic set N in U is defined as:
A ={< u; TN(u); IN(u); FN(u) >; u ∈ U} where TN(u), IN(u) and FN(u) are the truth membership
function, the indeterminacy membership function and the falsity membership function, respectively, such that T;
I; F : X →]−0; 1+[ and −0 ≤ TN(u) + IN(u) + FN(u) ≤ 3+.

In order to apply the neutrosophic set to scientific fields, its parameters should be specified.
Hence, Wang et al. [11] provided the following definition.

Definition 2 ( [11]). Let U be a universe of discourse. A single-valued neutrosophic set (SVNS) S in U is
defined as:

S =
∫

U
〈T(U), I(U), F(U)〉/u, u ∈ U,

when U is continuous and

S =
n

∑
i=1
〈T(Ui), I(Ui), F(Ui)〉/ui, ui ∈ U,

when U is discrete, where TS, IS and FS are the truth membership function, the indeterminacy membership
function and the falsity membership function, respectively, and TS; IS; FS : U → [0, 1].

Ali and Smarandache [29] conceptualized the complex neutrosophic set and gave the basic
operations in the following two definitions.

Definition 3 ([29]). Let a universe of discourse U, a complex neutrosophic set S in U, be characterized by
a truth membership function TS(u), an indeterminacy membership function IS(u) and a falsity membership
function FS(u) that assigns a complex-valued grade for each of these membership functions in S for any u ∈ U.
By definition, the values TS(u), IS(u), FS(u) and their sum may all be within the unit circle in the complex
plane and are of the form, TS(u) = pS(u).ejµS(u), IS(u) = qS(u).ejνS(u) and FS(u) = rS(u).ejωS(u); each of
pS(u), qS(u), rS(u) and µS(u), νS(u), ωS(u) are, respectively, real valued and pS(u), qS(u), rS(u) ∈ [0, 1]
such that 0− ≤ PS(u) + qS(u) + rS(u) ≤ 3+.

Definition 4 ([29]). Let A and B be two complex neutrosophic sets on the universe U, where A is characterized
by a truth membership function TA(u) = pA(u).ejµA(u), an indeterminacy membership function IA(u) =

qA(u).ejνA(u) and a falsity membership function FA(u) = rA(u).ejωA(u) and B is characterized by a truth
membership function TB(u) = pB(u).ejµB(u), an indeterminacy membership function IB(u) = qB(u).ejνB(u)

and a falsity membership function FB(u) = rB(u).ejωB(u).
We define the the complement, subset, union and intersection operations as follows.

1. The complement of A, denoted as c̃(A), is specified by functions:

Tc̃(A)(u) = pc̃(A)(u).e
jµc̃(A)(u) = rA(u).ej(2π−µA(u)),

Ic̃(A)(u) = qc̃(A)(u).e
jνc̃(A)(u) = (1− qA(u)).ej(2π−νA(u)) and

Fc̃(A)(u) = rc̃(A)(u).e
jωc̃(A)(u) = pA(u).ej(2π−ωA(u)).

2. A is said to be complex neutrosophic subset of B (A ⊆ B) if and only if the following conditions are satisfied:

(a) TA(u) ≤ TB(u) such that pA(u) ≤ pB(u) and µA(u) ≤ µB(u).
(b) IA(u) ≥ IB(u) such that qA(u) ≥ qB(u) and νA(u) ≥ νB(u).
(c) FA(u) ≥ FB(u) such that rA(u) ≥ rB(u) and ωA(u) ≥ ωB(u).
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3. The union (intersection) of A and B, denoted as A∪ (∩)B, and the truth membership function TA∪(∩)B(u),
the indeterminacy membership function IA∪(∩)B(u) and the falsity membership function FA∪(∩)B(u) are
defined as:

TA∪(∩)B(u) = [(pA(u) ∨ (∧)pB(u))].ej(µA(u)∨(∧)µB(u)),

IA∪(∩)B(u) = [(qA(u) ∧ (∨)qB(u))].ej(νA(u)∧(∨)νB(u)) and

FA∪(∩)B(u) = [(rA(u) ∧ (∨)rB(u))].ej(ωA(u)∧(∨)ωB(u)),

where ∨ = max and ∧ = min.

We will now introduce the concept of CNSES.

Definition 5. Let U be a universe, E a set of parameters, X a set of experts (agents) and
O = {1 = agree, 0 = disagree} a set of opinions. Let Z = E× X×O and A ⊆ Z. A pair (H, A) is called a
complex neutrosophic soft expert set (CNSES) over U, where H is a mapping given by:

H : A→ CNU ,

where CNU denotes the power complex neutrosophic set of U.
It is to be noted that ∀α ∈ A, H(α) represents the degree and the phase of belongingness, indeterminacy

and non-belongingness of the elements of U in H(α).

The following example illustrates the above definition of the CNSES.

Example 1. Suppose we want to examine the influence of some financial indicators on the most important
sectors in the Malaysian economy, which are represented by the universal set U = {u1, u2}, where u1 stands for
the industry sector and u2 stands for the tourism sector. Let E = {e1, e2, e3} be the set of parameters (financial
indicators), where ei(i = 1, 2, 3) denotes the indicators “the plunge in oil prices”, “currency fluctuations” and
“the rate of inflation”. Let X = {p, q} be a set of experts who are assigned to analyze these three indicators
by determining the degree and the total time of the influence of these factors on the mentioned sectors of the
Malaysian economy. Suppose O = {1 = agree, 0 = disagree} is a set of opinions and Z = E× X×O, where
A ⊆ Z. Suppose that this study is conducted over a limited time span of 12 months. The experts can express
their opinions as exemplified below.

(H, A) =
{{

(e1, p, 1), { 〈0.9ej2Π(11/12), 0.2ej2Π(3/12), 0.1ej2Π(0)〉
u1

, 〈0.9ej2Π(11/12), 0.6ej2Π(5/12), 0.3ej2Π(0)〉
u2

}
}

,{
(e1, q, 1), { 〈0.5ej2Π(3/24), 0.2ej2Π(1/48), 0.9ej2Π(10/12)〉

u1
, 〈0.9ej2Π(9/12), 0.4ej2Π(5/12), 0.5ej2Π(5/12)〉

u2
}
}

,{
(e2, p, 1), { 〈0.3ej2Π(6/12), 0.2ej2Π(1/24), 0.9ej2Π(47/48)〉

u1
, 〈0.9ej2Π(11/12), 0.5ej2Π(7/12), 0.4ej2Π(1/48)〉

u2
}
}

,{
(e2, q, 1), { 〈0.1ej2Π(1/24), 0.2ej2Π(5/12), 0.9ej2Π(11/12)〉

u1
, 〈0.9ej2Π(9/12), 0.1ej2Π(7/12), 0.2ej2Π(0)〉

u2
}
}

,{
(e3, p, 1), { 〈0.5ej2Π(9/12), 0.3ej2Π(1/48), 0.8ej2Π(10/12)〉

u1
, 〈0.8ej2Π(5/12), 0.2ej2Π(3/12), 0.1ej2Π(0)〉

u2
}
}

,{
(e3, q, 1), { 〈0.6ej2Π(8/12), 0.3ej2Π(9/12), 0.7ej2Π(11/12)〉

u1
, 〈0.8ej2Π(3/12), 0.1ej2Π(0.1), 0.3ej2Π(5/24)〉

u2
}
}

,{
(e1, p, 0), { 〈0.1ej2Π(8/12), 0.8ej2Π(7/12), 0.7ej2Π(10/12)〉

u1
, 〈0.3ej2Π(5/12), 0.4ej2Π(8/12), 0.9ej2Π(1)〉

u2
}
}

,{
(e1, q, 0), { 〈0.9ej2Π(11/12), 0.8ej2Π(1/12), 0.5ej2Π(1/24)〉

u1
, 〈0.5ej2Π(5/12), 0.6ej2Π(8/12), 0.9ej2Π(5/12)〉

u2
}
}

,{
(e2, p, 0), { 〈0.9ej2Π(1/24), 0.8ej2Π(3/12), 0.3ej2Π(9/12)〉

u1
, 〈0.4ej2Π(7/12), 0.1ej2Π(5/12), 0.4ej2Π(7/12)〉

u2
}
}

,{
(e2, q, 0), { 〈0.9ej2Π(9/12), 0.8ej2Π(10/12), 0.1ej2Π(1/12)〉

u1
, 〈0.2ej2Π(1/12), 0.9ej2Π(47/48), 0.2ej2Π(1)〉

u2
}
}

,{
(e3, p, 0), { 〈0.8ej2Π(10/12), 0.8ej2Π(9/12), 0.1ej2Π(1/24)〉

u1
, 〈0.2ej2Π(3/12), 0.9ej2Π(11/12), 0.2ej2Π(5/12)〉

u2
}
}

,{
(e3, q, 0), { 〈0.9ej2Π(11/12), 0.8ej2Π(10/12), 0.1ej2Π(3/12)〉

u1
, 〈0.2ej2Π(4/12), 0.9ej2Π(11/12), 0.2ej2Π(1)〉

u2
}
}}

In the CNSES (H, A), the amplitude terms represent the degree of influence of a financial indicator on the
corresponding economy sector, whereas the phase terms depict the total time (phase) of this influence. Both the
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amplitude terms and phase terms lie between zero and one such that an amplitude term with a value close to zero
(one) implies that a financial indicator has very little (strong) influence on its corresponding economy sector,
and a phase term with a value close to zero (one) implies that this influence spans for a very long (short) period
of time.

3. Complex Neutrosophic Soft Expert Relations

We will propose the definitions of Cartesian product of CNSESs and the complex neutrosophic
soft expert relation.

We define the Cartesian product between two CNSESs as follows:

Definition 6. Let U be an initial universal set, E a set of parameters, X a set of experts and O = {1 =

agree, 0 = disagree} a set of opinions. Let Z = E× X ×O and A, B ⊆ Z. Let (H, A) and (G, B) be two
complex neutrosophic soft expert sets over the soft universe (U, Z). The Cartesian product of (H, A) and (G, B),
denoted by (H, A)× (G, B), is a complex neutrosophic soft expert set (K, C), where C = A× B and (K, C) are

defined as (K, C) =
{〈

(a, b), TK(a,b)(u), IK(a,b)(u), FK(a,b)(u)
〉

: (a, b) ∈ A× B, u ∈ U
}

, where TK(a,b)(u)

is a complex-valued membership function, IK(a,b)(u) is a complex-valued indeterminacy membership function,
FK(a,b)(u) is a complex-valued non-membership function and ∀u ∈ U, ∀(a, b) ∈ A× B,

TK(a,b)(u) = pK(a,b)(u).e
jµK(a,b)(u) = min(pH(a)(u), pG(b)(u)).e

jmin(µH(a)(u),µG(b)(u)),
IK(a,b)(u) = qK(a,b)(u). ejνK(a,b)(u) = max(qH(a)(u), qG(b)(u)). ejmax(νH(a)(u),νG(b)(u)) and
FK(a,b)(u) = rK(a,b)(u).e

jωK(a,b)(u) = max(rH(a)(u), rG(b)(u)). ejmax(ωH(a)(u),ωG(b)(u)).

We will now define the concept of the complex neutrosophic soft expert relation as follows.

Definition 7. Let (H, A) and (G, B) be two CNSESs over a universe U. A complex neutrosophic soft expert
relation (CNSER) from (H, A) to (G, B) is a complex neutrosophic soft expert subset of (H, A)× (G, B). Thus,
a complex neutrosophic soft expert relation from (H, A) to (G, B) is of the form (R, C) where C ⊆ A× B and
R(a, b) ⊆ H(a)× G(b), ∀(a, b) ∈ C.

The CNSER (R, C) from (H, A) to (G, B) can be written as (R, C) = H(a)∩̃NG(b), ∀(a, b) ∈ C ⊆
A× B. As always, (R, C) can be represented as the set of ordered pairs:

(R, C) =
{〈

(a, b), TR(a,b)(u), IR(a,b)(u), FR(a,b)(u)
〉

: (a, b) ∈ C ⊆ A× B, u ∈ U
}

,

where ∀u ∈ U and ∀(a, b) ∈ C ⊆ A× B,

TR(a,b)(u) = pR(a,b)(u).e
jµR(a,b)(u) = min(pH(a)(u), pG(b)(u)).e

jmin(µH(a)(u),µG(b)(u)),
IR(a,b)(u) = qR(a,b)(u). ejνR(a,b)(u) = max(qH(a)(u), qG(b)(u)). ejmax(νH(a)(u),νG(b)(u)) and
FR(a,b)(u) = rR(a,b)(u).e

jωR(a,b)(u) = max(rH(a)(u), rG(b)(u)). ejmax(ωH(a)(u),ωG(b)(u)).

If (R, C) is a CNSER from (H, A) to (H, A), then it is called a CNSER on (H, A), and it can be defined
in the parameterized form as follows.

I f (H, A) = {H(a1), H(a2), . . .}, thenH(a1)RH(a2)i f andonlyi f H(a1)× H(a2) ∈ (R, C).

Now, we put forward a real-life application of the CNSER to reveal its ability to describe and
analyze real events.
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3.1. Complex Neutrosophic Soft Expert Relation in the Economy

The complex neutrosophic soft expert set relation can be effectively used to measure the interaction
between several economical variables where the factor of time plays a key role and the indeterminacy
is unavoidable.

Now, we give an example of a relation between two CNSESs.

Example 2. Suppose that we are curious about the changes of the monetary rate of exchange between
the Malaysian ringgit (MYR) and the currencies of its four major trading partners; U.S. dollar (USD),
Chinese yuan (yuan), Japanese yen (JPY) and Singapore dollar (SD) based on exports of Malaysia to
these countries within a time frame of 12 months. Let U be the universal set, which describes the degree
and type of influence of the parameters (financial indicators) related to the Malaysian economy, where
U = {u1, u2, u3} such that u1 = positive influence, u2 = negative influence and u3 = no influence.
Let E = {e1, e2, e3, e4, é1, é2, é3, é4} be a set of parameters that represents the financial indicators that
affect the Malaysian economy, where e1, e2, e3 and e4 = volatility of currency rates between MYR and
USD, yuan, JPY and SD, respectively, and é1, é2, é3, é4 = total exports of Malaysia to the U.S., China,
Japan and Singapore, respectively. Let X = {p, q} be a set of economic experts who are assigned to
analyze the effect of the volatility of exchange rates on the total exports of Malaysia by determining the
degree and the total time of this influence on the total exports of Malaysia. Let (H, A) and (G, B) be two
CNSESs over U, where A = {(e1, p, 1), (e1, q, 1), (e1, p, 0), (e1, q, 0), (e2, p, 1), (e2, q, 1), (e2, p, 0), (e2, q, 0),
(e3, p, 1), (e3, q, 1), (e3, p, 0), (e3, q, 0), (e4, p, 1), (e4, q, 1), (e4, p, 0), (e4, q, 0)} and B = {(é1, p, 1), (é1, q, 1),
(é1, p, 0), (é1, q, 0), (é2, p, 1), (é2, q, 1), (é2, p, 0), (é2, q, 0), (é3, p, 1), (é3, q, 1), (é3, p, 0), (é3, q, 0), (é4, p, 1),
(é4, q, 1), (é4, p, 0), (é4, q, 0)}.

Suppose the two CNSESs (H, A) and (G, B) are defined as follows.

(H, A) = {
(
(e1, p, 1), { 〈0.01ej2Π(1/48), 0.2ej2Π(1/24), 0.9ej2Π(12/12)〉

u1
, 〈0.9ej2Π(11/12), 0.1ej2Π(4/12), 0.05ej2Π(0)〉

u2
,

〈0.04ej2Π(0), 0.2ej2Π(1/48), 0.7ej2Π(11/12)〉
u3

}
)

,
(
(e1, q, 1), { 〈0.02ej2Π(0), 0.1ejΠ(1/24), 0.8ej2Π(11/12)〉

u1
,

〈0.9ej2Π(10/12), 0.1ej2Π(3/12), 0.07ej2Π(1/48)〉
u2

, 〈0.05ej2Π(1/24), 0.4ej2Π(1/12), 0.6ej2Π(10/12)〉
u3

}
)

,
(
(e1, p, 0),

{ 〈0.9ej2Π(47/48), 0.8ej2Π(23/24), 0.01ej2Π(0)〉
u1

, 〈0.05ej2Π(1/12), 0.9ej2Π(8/12), 0.9ej2Π(12/12)〉
u2

,
〈0.7ej2Π(12/12), 0.8ej2Π(47/48), 0.04ej2Π(1/12)〉

u3
}
)

,
(
(e1, q, 0), { 〈0.8ej2Π(12/12), 0.9ejΠ(23/24), 0.02ej2Π(1/12)〉

u1
,

〈0.07ej2Π(2/12), 0.9ej2Π(9/12), 0.9ej2Π(47/48)〉
u2

, 〈0.6ej2Π(23/24), 0.6ej2Π(11/12), 0.05ej2Π(2/12)〉
u3

}
)

,
(
(e2, p, 1),

{ 〈0.05ej2Π(0), 0.1ej2Π(1/48), 0.7ej2Π(10/12)〉
u1

, 〈0.9ej2Π(9/12), 0.3ej2Π(1/12), 0.08ej2Π(1/48)〉
u2

,
〈0.03ej2Π(1/24), 0.4ej2Π(0), 0.9ej2Π(11/12)〉

u3
}
)

,
(
(e2, q, 1), { 〈0.02ej2Π(1/24), 0.2ej2Π(1/24), 0.8ej2Π(12/12)〉

u1
,

〈0.8ej2Π(10/12), 0.3ej2Π(2/12), 0.08ej2Π(1/48)〉
u2

, 〈0.06ej2Π(0), 0.1ej2Π(1/48), 0.9ej2Π(11/12)〉
u3

}
)

,
(
(e2, p, 0),

{ 〈0.7ej2Π(12/12), 0.9ej2Π(47/48), 0.05ej2Π(2/12)〉
u1

, 〈0.08ej2Π(3/12), 0.7ej2Π(11/12), 0.9ej2Π(47/48)〉
u2

,
〈0.9ej2Π(23/24), 0.6ej2Π(12/12), 0.03ej2Π(1/12)〉

u3
}
)

,
(
(e2, q, 0), { 〈0.8ej2Π(23/24), 0.8ej2Π(23/24), 0.02ej2Π(0)〉

u1
,

〈0.08ej2Π(2/12), 0.7ej2Π(10/12), 0.8ej2Π(47/48)〉
u2

, 〈0.9ej2Π(12/12), 0.9ej2Π(47/48), 0.06ej2Π(1/12)〉
u3

}
)

,
(
(e3, p, 1),

{ 〈0.9ej2Π(11/12), 0.1ejΠ(0), 0.02ej2Π(0)〉
u1

, 〈0.01ej2Π(0), 0.1ej2Π(1/24), 0.7ej2Π(9/12)〉
u2

,
〈0.05ej2Π(1/12), 0.4ej2Π(2/12), 0.6ej2Π(10/12)〉

u3
}
)

,
(
(e3, q, 1), { 〈0.8ej2Π(10/12), 0.2ejΠ(1/48), 0.03ej2Π(0)〉

u1
,

〈0.04ej2Π(0), 0.2ej2Π(3/24), 0.6ej2Π(10/12)〉
u2

, 〈0.02ej2Π(3/12), 0.5ej2Π(1/12), 0.5ej2Π(11/12)〉
u3

}
)

,
(
(e3, p, 0),

{ 〈0.02ej2Π(1/12), 0.9ejΠ(1), 0.9ej2Π(1)〉
u1

, 〈0.7ej2Π(1), 0.9ej2Π(23/24), 0.01ej2Π(3/12)〉
u2

,
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〈0.6ej2Π(11/12), 0.6ej2Π(10/12), 0.05ej2Π(2/12)〉
u3

}
)

,
(
(e3, q, 0), { 〈0.03ej2Π(2/12), 0.8ejΠ(47/48), 0.8ej2Π(1)〉

u1
,

〈0.6ej2Π(1), 0.2ej2Π(21/24), 0.04ej2Π(2/12)〉
u2

, 〈0.5ej2Π(9/12), 0.5ej2Π(11/12), 0.02ej2Π(1/12)〉
u3

}
)

,
(
(e4, p, 1),

{ 〈0.1ej2Π(1/12), 0.5ej2Π(4/12), 0.9ej2Π(12/12)〉
u1

, 〈0.06ej2Π(0), 0.5ej2Π(7/12), 0.8ej2Π(11/12)〉
u2

,
〈1ej2Π(12/12), 0.1ej2Π(1/12), 0.09ej2Π(1/48)〉

u3
}
)

,
(
(e4, q, 1), { 〈0.2ej2Π(3/12), 0.3ej2Π(7/12), 0.5ej2Π(11/12)〉

u1
,

〈0.1ej2Π(0), 0.3ej2Π(8/12), 0.9ej2Π(10/12)〉
u2

, 〈0.9ej2Π(11/12), 0.2ej2Π(3/12), 0.06ej2Π(3/48)〉
u3

}
)

,
(
(e4, p, 0),

{ 〈0.9ej2Π(11/12), 0.5ej2Π(8/12), 0.1ej2Π(0)〉
u1

, 〈0.8ej2Π(1), 0.5ej2Π(5/12), 0.06ej2Π(1/12)〉
u2

,
〈0.09ej2Π(0), 0.9ej2Π(11/12), 1ej2Π(47/48)〉

u3
}
)

,
(
(e4, q, 0), { 〈0.5ej2Π(9/12), 0.7ej2Π(5/12), 0.2ej2Π(1/12)〉

u1
,

〈0.9ej2Π(1), 0.7ej2Π(4/12), 0.1ej2Π(2/12)〉
u2

, 〈0.06ej2Π(1/12), 0.8ej2Π(9/12), 0.9ej2Π(45/48)〉
u3

}
)}

.

(G, B) =
{(

(é1, p, 1), { 〈0.2ej2Π(1/12), 0.1ej2Π(1/12), 0.7ej2Π(5/12)〉
u1

, 〈0.9ej2Π(12/12), 0.3ej2Π(1/12), 0.1ej2Π(0)〉
u2

,
〈0.5ej2Π(8/12), 0.1ej2Π(1/48), 0.5ej2Π(9/12)〉

u3
}
)

,
(
(é1, q, 1), { 〈0.1ej2Π(1/12), 0.2ejΠ(1/24), 0.6ej2Π(4/12)〉

u1
,

〈0.7ej2Π(11/12), 0.3ej2Π(1/12), 0.2ej2Π(1/48)〉
u2

, 〈0.4ej2Π(9/12), 0.1ej2Π(1/24), 0.7ej2Π(10/12)〉
u3

}
)

,(
(é1, p, 0), { 〈0.7ej2Π(11/12), 0.9ej2Π(11/12), 0.2ej2Π(7/12)〉

u1
, 〈0.1ej2Π(0), 0.7ej2Π(11/12), 0.9ej2Π(12/12)〉

u2
,

〈0.5ej2Π(4/12), 0.9ej2Π(47/48), 0.5ej2Π(3/12)〉
u3

}
)

,
(
(é1, q, 0), { 〈0.6ej2Π(11/12), 0.8ejΠ(23/24), 0.1ej2Π(8/12)〉

u1
,

〈0.2ej2Π(1/12), 0.7ej2Π(11/12), 0.7ej2Π(47/48)〉
u2

, 〈0.7ej2Π(3/12), 0.9ej2Π(23/24), 0.4ej2Π(2/12)〉
u3

}
)

,
(
(é2, p, 1),

{ 〈0.2ej2Π(0), 0.1ej2Π(0), 0.5ej2Π(9/12)〉
u1

, 〈1ej2Π(10/12), 0.01ej2Π(2/12), 0.03ej2Π(1/48)〉
u2

,
〈0.1ej2Π(0), 0.1ej2Π(1/12), 0.2ej2Π(4/12)〉

u3
}
)

,
(
(é2, q, 1), { 〈0.2ej2Π(1/48), 0.1ej2Π(0), 0.4ej2Π(9/12)〉

u1
,

〈0.9ej2Π(11/12), 0.03ej2Π(2/12), 0.09ej2Π(1/24)〉
u2

, 〈0.1ej2Π(0), 0.2ej2Π(3/12), 0.1ej2Π(3/12)〉
u3

}
)

,
(
(é2, p, 0),

{ 〈0.5ej2Π(12/12), 0.9ej2Π(12/12), 0.2ej2Π(3/12)〉
u1

, 〈0.03ej2Π(2/12), 0.99ej2Π(10/12), 1ej2Π(47/48)〉
u2

,
〈0.2ej2Π(12/12), 0.9ej2Π(11/12), 0.1ej2Π(8/12)〉

u3
}
)

,
(
(é2, q, 0), { 〈0.4ej2Π(47/48), 0.9ej2Π(12/12), 0.2ej2Π(3/12)〉

u1
,

〈0.09ej2Π(1/12), 0.97ej2Π(10/12), 0.9ej2Π(23/24)〉
u2

, 〈0.1ej2Π(12/12), 0.8ej2Π(9/12), 0.1ej2Π(9/12)〉
u3

}
)

,
(
(é3, p, 1),

{ 〈1ej2Π(10/12), 0.02ejΠ(0), 0.3ej2Π(1/12)〉
u1

, 〈0.6ej2Π(9/12), 0.09ej2Π(1/12), 0.6ej2Π(7/12)〉
u2

,
〈0.4ej2Π(0), 0.1ej2Π(1/12), 0.9ej2Π(7/12)〉

u3
}
)

,
(
(é3, q, 1), { 〈0.8ej2Π(11/12), 0.1ejΠ(0), 0.2ej2Π(4/12)〉

u1
,

〈0.5ej2Π(7/12), 0.1ej2Π(3/12), 0.5ej2Π(8/12)〉
u2

, 〈0.5ej2Π(0), 0.2ej2Π(3/12), 0.8ej2Π(8/12)〉
u3

}
)

,
(
(é3, p, 0),

{ 〈.03ej2Π(2/12), 0.98ejΠ(1), 1ej2Π(11/12)〉
u1

, 〈0.6ej2Π(3/12), 0.91ej2Π(11/12), 0.6ej2Π(5/12)〉
u2

,
〈0.9ej2Π(1), 0.9ej2Π(11/12), 0.4ej2Π(5/12)〉

u3
}
)

,
(
(é3, q, 0), { 〈0.2ej2Π(1/12), 0.9ejΠ(1), 0.8ej2Π(8/12)〉

u1
,

〈0.5ej2Π(5/12), 0.9ej2Π(9/12), 0.5ej2Π(4/12)〉
u2

, 〈0.8ej2Π(1), 0.8ej2Π(9/12), 0.5ej2Π(4/12)〉
u3

}
)

,
(
(é4, p, 1),

{ 〈0.2ej2Π(5/12), 0.7ej2Π(5/12), 0.1ej2Π(9/12)〉
u1

, 〈0.2ej2Π(0), 0.3ej2Π(6/12), 0.9ej2Π(12/12)〉
u2

,
〈1ej2Π(12/12), 0.02ej2Π(3/12), 0.1ej2Π(1/48)〉

u3
}
)

,
(
(é4, q, 1), { 〈0.3ej2Π(6/12), 0.6ej2Π(3/12), 0.2ej2Π(7/12)〉

u1
,

〈0.3ej2Π(0), 0.4ej2Π(7/12), 0.7ej2Π(11/12)〉
u2

, 〈0.9ej2Π(11/12), 0.03ej2Π(4/12), 0.2ej2Π(2/48)〉
u3

}
)

,
(
(é4, p, 0),

{ 〈0.1ej2Π(7/12), 0.3ej2Π(7/12), 0.2ej2Π(3/12)〉
u1

, 〈0.9ej2Π(1), 0.7ej2Π(6/12), 0.2ej2Π(0)〉
u2

,
〈0.1ej2Π(0), 0.98ej2Π(9/12), 1ej2Π(47/48)〉

u3
}
)

,
(
(é4, q, 0), { 〈0.2ej2Π(6/12), 0.4ej2Π(9/12), 0.3ej2Π(5/12)〉

u1
,

〈0.7ej2Π(1), 0.6ej2Π(5/12), 0.3ej2Π(1/12)〉
u2

, 〈0.2ej2Π(1/12), 0.97ej2Π(7/12), 0.9ej2Π(46/48)〉
u3

}
)}

.
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Now, we compute the relation between the two CNSESs (H, A) and (G, B) to investigate the effect of the
volatility of exchange rates on the total exports of Malaysia. Our CNSER denoted by (R, C) where C ⊆ A× B
such that (R, C) ⊆ (H, A)× (G, B) is:

(R, C) =
{(

(e1, p, 1), (é1, p, 1), { 〈0.01ej2Π(1/48) , 0.2ej2Π(1/12) , 0.9ej2Π(12/12)〉
u1

, 〈0.9ej2Π(11/12) , 0.3ej2Π(4/12) , 0.1ej2Π(0)〉
u2

,
〈0.04ej2Π(0) , 0.2ej2Π(1/48) , 0.7ej2Π(11/12)〉

u3
}
)

,
(
(e1, q, 1), (é1, q, 1), { 〈0.02ej2Π(0) , 0.2ejΠ(1/24) , 0.8ej2Π(11/12)〉

u1
,

〈0.7ej2Π(10/12) , 0.3ej2Π(3/12) , 0.2ej2Π(1/48)〉
u2

, 〈0.05ej2Π(1/24) , 0.4ej2Π(1/12) , 0.7ej2Π(10/12)〉
u3

}
)

,
(
(e1, p, 0), (é1, p, 0),

{ 〈0.7ej2Π(11/12) , 0.9ej2Π(23/24) , 0.2ej2Π(7/12)〉
u1

, 〈0.05ej2Π(0) , 0.9ej2Π(11/12) , 0.9ej2Π(12/12)〉
u2

,
〈0.5ej2Π(4/12) , 0.9ej2Π(47/48) , 0.5ej2Π(3/12)〉

u3
}
)

,
(
(e1, q, 0), (é1, q, 0), { 〈0.6ej2Π(11/12) , 0.9ejΠ(23/24) , 0.1ej2Π(8/12)〉

u1
,

〈0.07ej2Π(1/12) , 0.9ej2Π(11/12) , 0.9ej2Π(47/48)〉
u2

, 〈0.6ej2Π(3/12) , 0.9ej2Π(23/24) , 0.4ej2Π(2/12)〉
u3

}
)

,
(
(e2, p, 1), (é2, p, 1),

{ 〈0.05ej2Π(0) , 0.1ej2Π(1/48) , 0.7ej2Π(10/12)〉
u1

, 〈0.9ejΠ(9/12) , 0.3ej2Π(2/12) , 0.08ej2Π(1/48)〉
u2

,
〈0.03ej2Π(0) , 0.4ej2Π(1/12) , 0.9ej2Π(11/12)〉

u3
}
)

,
(
(e2, q, 1), (é2, q, 1), { 〈0.02ej2Π(1/48) , 0.2ej2Π(1/24) , 0.8ej2Π(12/12)〉

u1
,

〈0.8ej2Π(10/12) , 0.3ej2Π(2/12) , 0.08ej2Π(1/24)〉
u2

, 〈0.06ej2Π(0) , 0.2ej2Π(3/12) , 0.9ej2Π(11/12)〉
u3

}
)

,
(
(e2, p, 0), (é2, p, 0),

{ 〈0.5ej2Π(12/12) , 0.9ej2Π(12/12) , 0.2ej2Π(3/12)〉
u1

, 〈0.08ejΠ(2/12) , 0.99ej2Π(11/12) , 1ej2Π(47/48)〉
u2

,
〈0.2ej2Π(23/24) , 0.9ej2Π(12/12) , 0.1ej2Π(8/12)〉

u3
}
)

,
(
(e2, q, 0), (é2, q, 0), { 〈0.4ej2Π(23/24) , 0.9ej2Π(12/12) , 0.2ej2Π(3/12)〉

u1
,

〈0.09ej2Π(1/12) , 0.97ej2Π(10/12) , 0.9ej2Π(47/48)〉
u2

, 〈0.1ej2Π(12/12) , 0.9ej2Π(47/48) , 0.1ej2Π(9/12)〉
u3

}
)

,
(
(e3, p, 1), (é3, p, 1),

{ 〈0.9ej2Π(10/12) , 0.1ej2Π(0) , 0.3ej2Π(1/12)〉
u1

, 〈0.01ej2Π(0) , 0.1ej2Π(1/12) , 0.7ej2Π(9/12)〉
u2

,
〈0.05ej2Π(0) , 0.4ej2Π(2/12) , 0.9ej2Π(10/12)〉

u3
}
)

,
(
(e3, q, 1), (é3, q, 1), { 〈0.8ej2Π(10/12) , 0.2ej2Π(1/48) , 0.2ej2Π(4/12)〉

u1
,

〈0.04ej2Π(0) , 0.2ej2Π(3/12) , 0.6ej2Π(10/12)〉
u2

, 〈0.02ej2Π(0) , 0.5ej2Π(3/12) , 0.8ej2Π(11/12)〉
u3

}
)

,
(
(e3, p, 0), (é3, p, 0),

{ 〈0.02ej2Π(1/12) , 0.98ej2Π(1) , 1ej2Π(1)〉
u1

, 〈0.6ej2Π(3/12) , 0.91ej2Π(23/24) , 0.6ej2Π(5/12)〉
u2

,
〈0.6ej2Π(11/12) , 0.9ej2Π(11/12) , 0.4ej2Π(5/12)〉

u3
}
)

,
(
(e3, q, 0), (é3, q, 0), { 〈0.03ej2Π(1/12) , 0.9ej2Π(1) , 0.8ej2Π(1)〉

u1
,

〈0.5ej2Π(5/12) , 0.9ej2Π(21/24) , 0.5ej2Π(4/12)〉
u2

, 〈0.5ej2Π(9/12) , 0.8ej2Π(11/12) , 0.5ej2Π(4/12)〉
u3

}
)

,
(
(e4, p, 1), (é4, p, 1),

{ 〈0.1ej2Π(1/12) , 0.7ej2Π(5/12) , 0.9ej2Π(1)〉
u1

, 〈0.06ej2Π(0) , 0.5ej2Π(7/12) , 0.9ej2Π(1)〉
u2

,
〈1ej2Π(1) , 0.1ej2Π(3/12) , 0.1ej2Π(1/48)〉

u3
}
)

,
(
(e4, q, 1), (é4, q, 1), { 〈0.2ej2Π(3/12) , 0.6ej2Π(7/12) , 0.5ej2Π(11/12)〉

u1
,

〈0.1ej2Π(0) , 0.4ej2Π(8/12) , 0.9ej2Π(11/12)〉
u2

, 〈0.9ej2Π(11/12) , 0.2ej2Π(4/12) , 0.2ej2Π(3/48)〉
u3

},
(
(e4, p, 0), (é4, p, 0),

{ 〈0.1ej2Π(7/12) , 0.5ej2Π(8/12) , 0.2ej2Π(3/12)〉
u1

, 〈0.8ej2Π(1) , 0.7ej2Π(6/12) , 0.2ej2Π(1/12)〉
u2

,
〈0.09ej2Π(0) , 0.98ej2Π(11/12) , 1ej2Π(47/48)〉

u3
}
)

,
(
(e4, q, 0), (é4, q, 0), { 〈0.2ej2Π(6/12) , 0.7ej2Π(9/12) , 0.3ej2Π(5/12)〉

u1
,

〈0.7ej2Π(1) , 0.7ej2Π(5/12) , 0.3ej2Π(2/12)〉
u2

, 〈0.06ej2Π(1/12) , 0.97ej2Π(9/12) , 0.9ej2Π(46/48)〉
u3

}
)}

.

In our example, the terms of the truth amplitude, indeterminate amplitude and false amplitude
of (R, C) measure the membership degree of the impact of Malaysian exchange rate volatility on
Malaysian exports, the indeterminacy membership degree of the impact of Malaysian exchange rate
volatility on Malaysian exports and the non-membership degree of the impacts of Malaysian exchange
rate volatility on Malaysian exports, respectively, whereas the truth phase term, the indeterminate
phase term and the false phase term of (R, C) represent the period of time in which the Malaysian
exchange rate variability influences the total of Malaysian exports, the period of time in which we
are unable to determine if the Malaysian exchange rate variability influences or does not influence
Malaysian exports and the period of time in which the Malaysian exchange rate variability does not
influence Malaysian exports, respectively.

In the following discussion, we provide an example of scenarios that could possibly occur in this
context. Let us consider the approximation:

R((e1, p, 1), (é1, p, 1)) =(
{ 〈0.01ej2Π(1/48) , 0.2ej2Π(1/12) , 0.9ej2Π(12/12)〉

u1
, 〈0.9ej2Π(11/12) , 0.3ej2Π(4/12) , 0.1ej2Π(0)〉

u2
, 〈0.04ej2Π(0) , 0.2ej2Π(1/48) , 0.7ej2Π(11/12)〉

u3
}
)

.
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For example, in the complex neutrosophic value 〈0.9ej2Π(11/12),0.3ej2Π(4/12), 0.1ej2Π(0)〉
u2

,

the complex-valued truth membership function 0.9ej2Π(11/12) indicates that the expert p agrees that
there is a strong influence of exchange rate volatility between MYR and USD on the total exports
of Malaysia to the U.S., since the amplitude term 0.9 is very close to one and this influence span of
11 months is considered a very long time of influence (phase term with a value very close to one), and
this influence is negative (an increase in variability between MYR and USD implies reduced Malaysia
total export to the U.S.). The complex-valued indeterminacy membership function 0.3ej2Π(4/12) can
be interpreted as the expert p is unable to determine if there is a negative influence of exchange rate
volatility on the total exports to the U.S. or not with a degree of 0.3, and this influence is not evident for
four months. For the complex-valued false membership function 0.1ej2Π(0), expert p is of the opinion
that there is no negative influence with a degree of 0.1, and the time with no influence is zero.

Our problem is to measure the influence of the volatility of currency rates between the Malaysian
ringgit (MYR) and U.S. dollar (USD), Chinese yuan (yuan), Japanese yen (JPY) and Singapore dollar
(SD) on the total exports of Malaysia to these countries. Thus, this case study deals with four cases,
and each case will be studied separately. For example, in the first case, we will determine if the total
exports of Malaysia to the U.S. is affected negatively, positively or if it is not affected by the volatility
of currency rates between the Malaysian ringgit (MYR) and U.S. dollar (USD). We will do the same
with the remaining cases.

Next, the CNSER (R, C) is used together with a generalized algorithm to solve this MADM
problem. In this algorithm, the first four steps will be applied to all cases. Step 5 to Step 8 deal with
each case separately. The algorithm steps are given as follows.

Step 1: Input the CNSESs (H, A) and (G, B).
Step 2: Calculate The CNSER (R, C) of (H, A)× (G, B).
Step 3: Convert the CNSER (R, C), which is actually a CNSES to the SVNSES (R̂, C) by obtaining the

weighted aggregation values of T
R̂(α,β)

(u), I
R̂(α,β)

(u) and F
R̂(α,β)

(u), ∀(α, β) ∈ C and ∀u ∈ U
as in the following formulas:

T
R̂(α,β)

(u) = w1 pR(α,β)(u) + w2(1/2π)µR(α,β)(u),

I
R̂(α,β)

(u) = w1qR(α,β)(u) + w2(1/2π)νR(α,β)(u),

F
R̂(α,β)

(u) = w1rR(α,β)(u) + w2(1/2π)ωR(α,β)(u),

where pR(α,β)(u), qR(α,β)(u), rR(α,β)(u) and µR(α,β)(u), νR(α,β)(u), ωR(α,β)(u) are the amplitude
and phase terms in the CNSES (R, C), respectively. T

R̂(α,β)
(u), I

R̂(α,β)
(u) and F

R̂(α,β)
(u) are

the truth membership function, indeterminacy membership function and falsity membership
function in the SVNSES (R̂, C), respectively, and w1, w2 are the weights for the amplitude
terms (degrees of influence) and the phase terms (times of influence), respectively, where w1

and w2 ∈ [0, 1] and w1 + w2 = 1.

Step 4: Find the values of Z
R̂(α,β)

(u) =
TR̂(α,β)(u)+(1−I

R̂(α,β)
(u))+(1−F

R̂(α,β)
(u))

3 , ∀u ∈ U and ∀(α, β) ∈ C.

Note that Z
R̂(α,β)

(u) comprises the normalized values of S
R̂(α,β)

(u) = T
R̂(α,β)

(u) −
I
R̂(α,β)

(u) − F
R̂(α,β)

(u), ∀u ∈ U and ∀(α, β) ∈ C. We normalize the elements of

S = {S
R̂(α,β)

(u), ∀u ∈ U and ∀(α, β) ∈ C}, since this represents the degree of the influence,

where S takes its minimum value at −2 when (T
R̂(α,β)

(u), I
R̂(α,β)

(u), F
R̂(α,β)

(u)) = (0, 1, 1),

while its maximum takes the value one at (T
R̂(α,β)

(u), I
R̂(α,β)

(u), F
R̂(α,β)

(u)) = (1, 0, 0).

Step 5: Find the highest numerical grade of the elements in the agree-SVNSES and disagree-SVNSES
for each ordered pair of the parameters ej and éj.
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Step 6: Compute the score of each element ui ∈ U by taking the sum of the numerical grades of each
element for the agree-SVNSES and disagree-SVNSES, denoted by Ki and Si, respectively.

Step 7: Find the values of the score ri = Ki − Si for each element ui ∈ U.
Step 8: Determine the value of the highest score m = maxui ∈U{ri}. The decision is to choose

the associated element ui as the appropriate solution under the the parameter ej and its
corresponding éj.

It is to be noted that this method is used to deal with decision-making problems with known
weight information (complete weight information). To execute the above steps, we assume that the
weight vector for the amplitude terms is w1 = 0.6 and the weight vector for the phase terms is w2 = 0.4

Now, to convert the CNSES (R, C) to the SVNSES (R̂, C), obtain the weighted aggregation values
of T

R̂(α,β)
(u), I

R̂(α,β)
(u) and F

R̂(α,β)
(u),∀(α, β) ∈ C and ∀u ∈ U. To illustrate this step, we calculate

T
R̂(α,β)

(u), I
R̂(α,β)

(u) and F
R̂(α,β)

(u), when (α, β) = ((e1, p, 1), (é1, p, 1)) and u = u1 as shown below:

T
R̂((e1,p,1),(é1,p,1))

(u1) = w1 pR((e1,p,1),(é1,p,1))(u1) + w2(1/2π)µR((e1,p,1),(é1,p,1))(u1)

= 0.6(0.01) + 0.4(1/2π)(2π)(1/48)
= 0.014.

I
R̂((e1,p,1),(é1,p,1))

(u1) = w1qR((e1,p,1),(é1,p,1))(u1) + w2(1/2π)νR((e1,p,1),(é1,p,1))(u1)

= 0.6(0.2) + 0.4(1/2π)(2π)(1/12)
= 0.153.

F
R̂((e1,p,1),(é1,p,1))

(u1) = w1rR((e1,p,1),(é1,p,1))(u1) + w2(1/2π)ωR((e1,p,1),(é1,p,1))(u1)

= 0.6(0.9) + 0.4(1/2π)(2π)(1)
= 0.94.

Then, for (α, β) = ((e1, p, 1), (é1, p, 1)) and u = u1, the single-valued neutrosophic soft expert
value (SVNSEV) is (T

R̂(α,β)
(u), I

R̂(α,β)
(u), F

R̂(α,β)
(u)) = (0.014, 0.153, 0.94).

In the same manner, we calculate the other SVNSEVs, ∀(α, β) ∈ C and ∀u ∈ U as in Table 1,
which gives the values of Z

R̂(α,β)
(u), ∀(α, β) ∈ C and ∀u ∈ U.

It is to be noted that the upper and lower terms for each element in Table 1 represent the SVNSEVs,
∀(α, β) ∈ C and ∀u ∈ U and the values of Z

R̂(α,β)
(u), ∀(α, β) ∈ C and ∀u ∈ U, respectively. Now, we

apply Step 5 to Step 8 to each case separately. We begin by examining the first case to determine the
type of relationship between the total exports of Malaysia to the U.S. and the variability of currency
rates between MYR and USD.

Tables 2 and 3 give the highest numerical grade for the elements in the agree-SVNSES and
disagree-SVNSES, respectively, under the the parameter e1 and its corresponding é1.

Let Ki and Si represent the score of each numerical grade for the agree-SVNSES and
disagree-SVNSES, respectively. These values are given in Table 4.
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Table 1. Values of (R̂, C) and Z
R̂(α,β).

(u).

U u1 u2 u3

((e1, p, 1), (é1, p, 1)) 〈0.014, 0.153, 0.94〉 〈0.907, 0.313, 0.06〉 〈0.024, 0.128, 0.787〉
0.307 0.845 0.37

((e1, q, 1), (é1, q, 1)) 〈0.012, 0.137, 0.847〉 〈0.753, 0.28, 0.128〉 〈0.047, 0.273, 0.753〉
0.343 0.782 0.340

((e1, p, 0), (é1, p, 0)) 〈0.787, 0.923, 0.353〉 〈0.03, 0.907, 0.94〉 〈0.433, 0.932, 0.4〉
0.504 0.061 0.367

((e1, q, 0), (é1, q, 0)) 〈0.727, 0.923, 0.327〉 〈0.075, 0.907, 0.932〉 〈0.46, 0.923, 0.307〉
0.492 0.079 0.41

((e2, p, 1), (é2, p, 1)) 〈0.03, 0.068, 0.753〉 〈0.84, 0.247, 0.056〉 〈0.503, 0.94, 0.327〉
0.403 0.846 0.412

((e2, q, 1), (é2, q, 1)) 〈0.020, 0.037, 0.88〉 〈0.813, 0.247, 0.065〉 〈0.036, 0.22, 0.907〉
0.368 0.834 0.303

((e2, p, 0), (é2, p, 0)) 〈0.7, 0.94, 0.22〉 〈0.115, 0.961, 0.992〉 〈0.503, 0.94, 0.327〉
0.513 0.054 0.412

((e2, q, 0), (é2, q, 0)) 〈0.623, 0.94, 0.22〉 〈0.087, 0.915, 0.932〉 〈0.46, 0.932, 0.36〉
0.488 0.08 0.389

((e3, p, 1), (é3, p, 1)) 〈0.873, 0.06, 0.213〉 〈0.006, 0.093, 0.72〉 〈0.03, 0.307, 0.873〉
0.867 0.398 0.283

((e3, q, 1), (é3, q, 1)) 〈0.813, 0.128, 0.253〉 〈0.024, 0.22, 0.693〉 〈0.012, 0.4, 0.847〉
0.811 0.370 0.255

((e3, p, 0), (é3, p, 0)) 〈0.045, 0.988, 1〉 〈0.46, 0.929, 0.527〉 〈0.727, 0.907, 0.407〉
0.019 0.335 0.471

((e3, q, 0), (é3, q, 0)) 〈0.051, 0.94, 0.88〉 〈0.467, 0.89, 0.433〉 〈0.6, 0.847, 0.433〉
0.077 0.381 0.44

((e4, p, 1), (é4, p, 1)) 〈0.093, 0.587, 0.94〉 〈0.036, 0.533, 0.94〉 〈1, 0.16, 0.068〉
0.189 0.188 0.924

((e4, q, 1), (é4, q, 1)) 〈0.22, 0.593, 0.667〉 〈0.06, 0.507, 0.907〉 〈0.907, 0.253, 0.145〉
0.32 0.215 0.836

((e4, p, 0), (é4, p, 0)) 〈0.293, 0.567, 0.22〉 〈0.88, 0.62, 0.153〉 〈0.054, 0.955, 0.992〉
0.502 0.702 0.036

((e4, q, 0), (é4, q, 0)) 〈0.32, 0.72, 0.347〉 〈0.82, 0.587, 0.247〉 〈0.069, 0.882, 0.923〉
0.418 0.662 0.088

Table 2. Numerical grade for agree-SVNSES.

U ui Highest Numerical Grade

((e1, p, 1), (é1, p, 1)) u2 0.845
((e1, q, 1), (é1, q, 1)) u2 0.782

Table 3. Numerical grade for disagree-single-valued neutrosophic soft expert set (SVNSES).

U ui Highest Numerical Grade

((e1, p, 0), (é1, p, 0)) u1 0.504
((e1, q, 0), (é1, q, 0)) u1 0.492

Table 4. The score ri = Ki − Si.

i Ki Si ri

1 0 0.966 −0.966
2 1.627 0 1.627
3 0 0 0

From Table 4, maxui∈U{ri} = r2. Thus, the decision is to choose the associated element u2,
which represents “negative influence”, as the appropriate solution under the the parameter e1 and
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its corresponding é1. Therefore, we conclude that the total of the exports of Malaysia to the U.S. is
affected negatively by the variability of currency rates between MYR and USD.

With regard to Malaysia’s export to China, Japan and Singapore, we use the same calculations
above. In the case of China, we obtain u2 as the optimal solution under the the parameter e2 and its
corresponding é2, which means that the total of the exports of Malaysia to China is affected negatively
by the variability of currency rates between MYR and yuan. In contrast with the Malaysia export to the
U.S. and China, we find that the variability of currency rates between MYR and JPY affects the total of
the exports of Malaysia to Japan positively (u1 gained the highest score under parameters e3 and é3).
Finally, we conclude that there is no interaction between the total exports of Malaysia to Singapore and
the variability of exchange rates between MYR and SD as u3 gets the highest score under parameters
e4 and é4. Most probably, there has been a commercial exchange between Malaysia and Singapore due
to many factors such as geography, history, politics, ideology, culture and ethnicity that surpasses the
factor of the currency rate alone.

In general, we conclude that the influence of currency rates’ variability on Malaysian exports is
open to interpretation and differs from country to country based on the nature of the relation between
Malaysia and those countries.

3.2. Comparison between CNSER and the Existing Models

We have used the CNSER to determine the influence of the volatility of currency rates on the
total exports of Malaysia, where its amplitude terms represent the degree of the influence and its
phase terms represent the total time of the influence. In this section, we will compare our proposed
CNSER model to two other existing models, neutrosophic soft relations [34] and complex Atanassov’s
intuitionistic fuzzy relation (CAIFR) [35].

As an extension of fuzzy soft relation [32] and intuitionistic fuzzy soft relation [33], neutrosophic
soft relation [34] was developed to measure the degree of the interaction between two neutrosophic
soft sets, with the ability to handle all types of uncertainties including indeterminacy which is beyond
the scope of fuzzy and intuitionistic fuzzy soft relations. However, neutrosophic soft relation fails
to deal with problems that involve two-dimensional information/date i.e., two different types of
information/data pertaining to the problem parameters.

From Example 2, it can be seen that neutrosophic soft relation is not able to solve the decision
making problem presented, which involves two types of information (the degree of the influence and
the total time of the influence) since neutrosophic soft relation lacks the phase terms which represent
the time frame of this problem. An additional reason, is its inability to deal with more than one expert.

CAIFR [35] can overcome the problems inherent in using neutrosophic soft sets by virtue of the
phase terms which have the ability to represent the time frame of the interaction between the variables.
However, the complex Atanassov’s intuitionistic fuzzy model has some deficiencies compared to
CNSER. Firstly, it does not have the parameterizations tool to describe the relation variables in
a complete and comprehensive way, unlike CNSER which has the added advantage of soft sets.
Secondly, CAIFR [35] is characterized by complex-valued truth membership and complex-valued
falsity membership functions which handle only incomplete and uncertainty information, whereas
CNSER can handle all types of uncertainty including indeterminacy with complex-valued truth
membership function, complex-valued indeterminacy membership function and complex-valued
falsity membership function. Finally, CAIFR does not have a mechanism to incorporate the opinion of
all experts in one model which is a major problem in any relation that is used to handle and model
uncertainties and indeterminacies, as most real-life situations are often ambiguous. CNSER addresses
this problem, by providing the opinions of the experts. This makes it more valid and real in modeling
real life problems where the judgments of human beings play a major role.
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4. Operations on Complex Neutrosophic Soft Expert Relation

We will now introduce some basic operations on CNSER such as the inverse, complement and
composition of CNSERs. We will begin by first proposing the definition of the complement of CNSER.

Definition 8. Let (R, C) be a CNSER from (H, A) to (G, B), where

(R, C) =
{〈

(α, β), TR(α,β)(u), IR(α,β)(u), FR(α,β)(u)
〉

: (α, β) ∈ C ⊆ A× B, u ∈ U
}

. The complement of

(R, C) is defined as follows.

(R, C)c =
{〈

(α, β), TRc(α,β)(u), IRc(α,β)(u), FRc(α,β)(u)
〉

: (α, β) ∈ C ⊆ A× B, u ∈ U
}

,

where ∀(α, β) ∈ C ⊆ A× B and ∀u ∈ U,

TRc(α,β)(u) = c(pR(α,β)(u)).e
jµc

R(α,β)(u) = rR(α,β)(u).e
j(2π−µR(α,β)(u)),

IRc(α,β)(u) = c(qR(α,β)(u)).e
jνc

R(α,β)(u) = (1− qR(α,β)(u)).e
j(2π−νR(α,β)(u)),

FRc(α,β)(u) = c(rR(α,β)(u)).e
jωc

R(α,β)(u) = pR(α,β)(u).e
j(2π−ωR(α,β)(u)).

Next, we will give the definition of the inverse of a CNSER and give a proposition of the inverse
of a CNSER.

Definition 9. Let (R, C) be a CNSER from (H, A) to (G, B) where C ⊆ A× B. The inverse of (R, C) is
denoted as (R, C)−1 and is a CNSER from (G, B) to (H, A) defined as:

R−1(α, β) = R(β, α), ∀(α, β) ∈ C ⊆ A× B.

Proposition 1. Let U be a universe, (H, A) and (G, B) be two CNSESs over U and suppose that (R1, C) and
(R2, C) are two CNSERs from (H, A) to (G, B), where C ⊆ A× B. Then, the following results hold true:

1. ((R1, C)−1)−1 = (R1, C).
2. If (R1, C) ⊆ (R2, C) then (R1, C)−1 ⊆ (R2, C)−1.

Proof. ∀(α, β) ∈ C ⊆ A× B, we have

1. (R−1
1 )−1(α, β) = R−1

1 (β, α) = R1(α, β), thus ((R1, C)−1)−1 = (R1, C).

2. If R1(α, β) ⊆ R2(α, β), then R−1
1 (β, α) ⊆ R−1

2 (β, α) and, thus, (R1, C)−1 ⊆ (R2, C)−1.

Next, we will propose the axiomatic definition of the composition of CNSERs along with an
illustrative example, followed by two associated theorems.

Definition 10. Let (H, A), (G, B) and (K, C) be three complex neutrosophic soft expert sets over a universe
U, (R1, D1) be a CNSER from (H, A) to (G, B) and (R2, D2) be a CNSER from (G, B) to (K, C), where
D1 ⊆ A× B and D2 ⊆ B× C. The composition of the complex neutrosophic soft expert relations (R1, D1) and
(R2, D2) is defined as:

(R1 ◦ R2)(a, c) =
{〈

(a, c), TR1◦R2(a,c)(u), IR1◦R2(a,c)(u), FR1◦R2(a,c)(u)
〉

: (a, c) ∈ A× C, u ∈ U
}

, where

∀(a, b) ∈ D1 ⊆ A× B and (b, c) ∈ D2 ⊆ B× C,
TR1◦R2(a,c)(u) = pR1◦R2(a,c)(u).e

jµR1◦R2(a,c)(u), where
pR1◦R2(a,c)(u) = max[pR1(a,b)(u), pR2(b,c)(u)] = max[min(pH(a)(u), pG(b)(u)), min(pG(b)(u),
pK(c)(u))] and
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µR1◦R2(a,c)(u) = max[µR1(a,b)(u), µR2(b,c)(u)]= max[min(µH(a)(u), µG(b)(u)), min(µG(b)(u), µK(c)(u))],

IR1◦R2(a,c)(u)= qR1◦R2(a,c)(u).e
jνR1◦R2(a,c)(u), where

qR1◦R2(a,c)(u) = min[qR1(a,b)(u), qR2(b,c)(u)] = min[max(qH(a)(u), qG(b)(u)), max(qG(b)(u),
qK(c)(u))] and
νR1◦R2(a,c)(u) = min[νR1(a,b)(u), νR2(b,c)(u)]= min[max(νH(a)(u), νG(b)(u)), max(νG(b)(u), νK(c)(u))],

FR1◦R2(a,c)(u)= rR1◦R2(a,c)(u).e
jωR1◦R2(a,c)(u), where

rR1◦R2(a,c)(u) = max[rR1(a,b)(u), rR2(b,c)(u)] = max[min(rH(a)(u), rG(b)(u)), min(rG(b)(u), rK(c)(u))] and
ωR1◦R2(a,c)(u) = max[ωR1(a,b)(u), ωR2(b,c)(u)]= max[min(ωH(a)(u), ωG(b)(u)), min(ωG(b)(u), ωK(c)(u))].

This relationship can be written as (R1 ◦ R2)(a, c) = R1(a, b)∩̃N R2(b, c).

In the following, we give an example of the composition of complex neutrosophic soft expert
relations to illustrate how to employ both components of the amplitude term and phase term to convey
the idea of the composition concept.

Example 3. Suppose that U = {u1, u2, u3} is a set of medication and E = {a1, a2, b1, b2, c1, c2} is a set of
parameters that represent a set of diseases, where a1= dengue, a2= malaria, b1 = chikungunya, b2 = cholera,
c1 = typhoid and c2= yellow fever. Let X = {p, q} be a set of experts who are assigned to give their opinions
concerning these medications by taking into account both the degree of effectiveness of a medicine on a disease and
the time that is taken by this medicine to overcome this disease. Let (H, A), (G, B) and (K, C) be three CNSESs
over U, where A = {(a1, p, 1), (a2, q, 1)}, B = {(b1, p, 1), (b2, p, 0)} and C = {(c1, q, 0), (c2, p, 1)}. Then,
the CNSESs (H, A), (G, B) and (K, C) are defined as follows:

(H, A) =
{(

(a1, p, 1), { 〈0.4ej0.9Π , 0.6ej0.1Π , 0.6ej0.1Π〉
u1

, 〈0.8ej0.5Π , 0.7ej0.3Π , 0.8ej0.7Π〉
u2

, 〈0.4ej0.9Π , 0.4ej0.4Π , 0.1ej0.7Π〉
u3

}
)

,(
(a2, q, 1), { 〈0.5ej0.3Π , 0.5ej0.2Π , 0.2ej0.2Π〉

u1
, 〈0.8ej0.8Π , 0.1ej0.4Π , 0.7ej0.3Π〉

u2
, 〈0.6ej0.9Π , 0.8ej0.9Π , 0.4ej0.7Π〉

u3
}
)}

.

(G, B) =
{(

(b1, p, 1), { 〈0.1ej0.5Π , 0.4ej0.9Π , 0.2ej0.2Π〉
u1

, 〈0.1ej0.6Π , 0.7ej0.4Π , 0.2ej0.7Π〉
u2

, 〈0.5ej0.8Π , 0.3ej0.5Π , 0.6ej0.9Π〉
u3

}
)

,(
(b2, p, 0), { 〈0.9ej0.4Π , 0.4ej0.8Π , 0.7ej0.3Π〉

u1
, 〈0.6ej0.4Π , 0.5ej0.7Π , 0.8ej0.6Π〉

u2
, 〈0.3ej0.8Π , 0.4ej0.8Π , 0.2ej0.1Π〉

u3
}
)}

.

(K, C) =
{(

(c1, q, 0), { 〈0.7ej0.1Π , 0.1ej0.5Π , 0.3ej0.4Π〉
u1

, 〈0.7ej0.4Π , 0.2ej0.3Π , 0.3ej0.4Π〉
u2

, 〈0.1ej0.5Π , 0.8ej0.6Π , 0.9ej0.1Π〉
u3

}
)

,(
(c2, p, 1), { 〈0.4ej0.2Π , 0.6ej0.2Π , 0.1ej0.2Π〉

u1
, 〈0.2ej0.7Π , 0.3ej0.4Π , 0.6ej0.5Π〉

u2
, 〈0.9ej0.2Π , 0.1ej0.7Π , 0.9ej0.6Π〉

u3
}
)}

.

The CNSERs (R1, D1) from (H, A) to (G, B) and (R2, D2) from (G, B) to (K, C) are defined below if
and only if a, b and c are illnesses carried by mosquitoes, ∀(a, b) ∈ D1 ⊆ A× B and (b, c) ∈ D2 ⊆ B× C,
respectively. Then, the CNSERs (R1, D1) and (R2, D2) are given by:

(R1, D1) =
{(

((a1, p, 1), (b1, p, 1)), { 〈0.1ej0.5Π , 0.6ej0.9Π , 0.6ej0.2Π〉
u1

, 〈0.1ej0.5Π , 0.7ej0.4Π , 0.8ej0.7Π〉
u2

, 〈0.4ej0.8Π , 0.4ej0.5Π , 0.6ej0.9Π〉
u3

}
)

,(
((a2, q, 1), (b1, p, 1)), { 〈0.1ej0.3Π , 0.5ej0.9Π , 0.2ej0.2Π〉

u1
, 〈0.1ej0.6Π , 0.7ej0.4Π , 0.7ej0.7Π〉

u2
, 〈0.5ej0.8Π , 0.8ej0.9Π , 0.6ej0.9Π〉

u3
}
)}

.

(R2, D2) =
{(

((b1, p, 1), (c2, p, 1)), { 〈0.1ej0.2Π , 0.6ej0.9Π , 0.2ej0.2Π〉
u1

, 〈0.1ej0.6Π , 0.7ej0.4Π , 0.6ej0.7Π〉
u2

, 〈0.5ej0.2Π , 0.3ej0.7Π , 0.9ej0.9Π〉
u3

}
)}

.

The composition between the CNSERs (R1, D1) and (R2, D2) is as follows.

(R1 ◦ R2)(a, c) =
{(

((a1, p, 1), (c2, p, 1)), { 〈0.1ej0.5Π , 0.6ej0.9Π , 0.2ej0.2Π〉
u1

, 〈0.1ej0.6Π , 0.7ej0.4Π , 0.6ej0.7Π〉
u2

, 〈0.5ej0.8Π , 0.3ej0.5Π , 0.6ej0.9Π〉
u3

}
)

,(
((a2, q, 1), (c2, p, 1)), { 〈0.1ej0.3Π , 0.5ej0.9Π , 0.2ej0.2Π〉

u1
, 〈0.1ej0.6Π , 0.7ej0.4Π , 0.6ej0.7Π〉

u2
, 〈0.5ej0.8Π , 0.3ej0.7Π , 0.6ej0.9Π〉

u3
}
)}

.
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Theorem 1. Let (R1, D1) be a CNSER between (H, A) and (G, B) and (R2, D2) be a CNSER between (G, B)
and (K, C), such that D1 ⊆ A × B, D2 ⊆ B × C and (H, A), (G, B) and (K, C) are CNSESs over a soft
universe (U, E), then (R1 ◦ R2)

−1 = R−1
2 ◦ R−1

1 .

Proof. ∀(a, b) ∈ D1 ⊆ A× B and (b, c) ∈ D2 ⊆ B× C, let

(R1 ◦ R2)
−1(a, c) =

{
〈(a, c), T(R1◦R2)−1(a,c)(u), I(R1◦R2)−1(a,c)(u), F(R1◦R2)−1(a,c)(u)〉 : (a, c) ∈ D1 × D2

}
and R−1

2 ◦ R−1
1 (a, c) =

{
〈(a, c), TR−1

2 ◦R
−1
1 (a,c)(u), IR−1

2 ◦R
−1
1 (a,c)(u), FR−1

2 ◦R
−1
1 (a,c)(u)〉 : (a, c) ∈ D1 × D2

}
.

To prove the equality, we have to show that
T(R1◦R2)−1(a,c)(u) = TR−1

2 ◦R
−1
1 (a,c)(u), I(R1◦R2)−1(a,c)(u) = IR−1

2 ◦R
−1
1 (a,c)(u) and F(R1◦R2)−1(a,c)(u)

= FR−1
2 ◦R

−1
1 (a,c)(u). Therefore,

p(R1◦R2)−1(a,c)(u) = p(R1◦R2)(c,a)(u)
= max(pR1(c,b)(u), pR2(b,a)(u)),= max(pR2(b,a)(u), pR1(c,b)(u)),
= max[min(pG(b)(u), pH(a)(u)), min(pk(c)(u), pG(b)(u))],
= max[min(pH(a)(u), pG(b)(u)), min(pG(b)(u)), pk(c)(u)],
= max(pR−1

2 (a,b)(u), pR−1
1 (b,c)(u)),

= pR−1
2 ◦R

−1
1 (a,c)(u),

which implies p(R1◦R2)−1(a,c)(u) = pR−1
2 ◦R

−1
1 (a,c)(u). Similarly, we can show that µ(R1◦R2)−1(a,c)(u) =

µR−1
2 ◦R

−1
1 (a,c)(u), proving that T(R1◦R2)−1(a,c)(u) = TR−1

2 ◦R
−1
1 (a,c)(u). The proofs for the identity and

falsity terms can be similarly proven.

Theorem 2. Let (R1, E1) be a CNSER between (H, A) and (G, B), (R2, E2) a CNSER between (G, B) and
(K, C) and (R3, E3) a CNSER between (K, C) and (L, D) where E1 ⊆ A× B, E2 ⊆ B× C and E3 ⊆ C× D.
Then, R1 ◦ (R2 ◦ R3) = (R1 ◦ R2) ◦ R3.

Proof. ∀(a, b) ∈ E1 ⊆ A× B, (b, c) ∈ E2 ⊆ B× C and (c, d) ∈ E3 ⊆ C × D, let R1 ◦ (R2 ◦ R3)(a, d)
=
{〈

(a, d), TR1◦(R2◦R3)(a,d)(u), IR1◦(R2◦R3)(a,d)(u), FR1◦(R2◦R3)(a,d)(u)
〉

: (a, d) ∈ A × D, u ∈ U
}

and

(R1 ◦ R2) ◦ R3(a, d) =
{〈

(a, d), T(R1◦R2)◦R3(a,d)(u), I(R1◦R2)◦R3(a,d)(u), F(R1◦R2)◦R3(a,d)(u)
〉

: (a, d) ∈

A× D, u ∈ U
}

.

To prove the equality, we have to show that
TR1◦(R2◦R3)(a,d)(u) = T(R1◦R2)◦R3(a,d)(u), IR1◦(R2◦R3)(a,d)(u) = I(R1◦R2)◦R3(a,d)(u) and

FR1◦(R2◦R3)(a,d)(u) = F(R1◦R2)◦R3(a,d)(u). Therefore,

pR1◦(R2◦R3)(a,d)(u) = max(pR1(a,b)(u), p(R2◦R3)(b,d)(u)) = max[pR1(a,b)(u), max(pR2(b,c)(u), pR3(c,d)(u))],

= max[min(pH(a)(u), pG(b)(u)), max[min(pG(b)(u), pK(c)(u)), min(pK(c)(u), pL(d)(u))]],

= max[min(pH(a)(u), pG(b)(u)), min(pG(b)(u), pK(c)(u)), min(pK(c)(u), pL(d)(u))],

= max[max[min(pH(a)(u), pG(b)(u)), min(pG(b)(u), pK(c)(u))], min(pK(c)(u), pL(d)(u))],

= max[max[pR1(a,b)(u), pR2(b,c)(u)], pR3(c,d)(u)],

= max[p(R1◦R2)(a,c)(u), pR3(c,d)(u)],

= p(R1◦R2)◦R3(a,d)(u),

which implies that pR1◦(R2◦R3)(a,d)(u) = p(R1◦R2)◦R3(a,d)(u). Similarly, we can show that
µR1◦(R2◦R3)(a,d)(u) = µ(R1◦R2)◦R3(a,d)(u), proving that TR1◦(R2◦R3)(a,d)(u) = T(R1◦R2)◦R3(a,d)(u).

The proofs for the identity and falsity terms follow similarly.
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5. Equivalence Relations and Equivalence Classes on CNSESs

In this section, we define four types of CNSERs of reflexive, symmetric, transitive and equivalence
relations. We also define the concept of equivalence class and give a proposition combining all of
these concepts.

Definition 11. Let (R, C) be a CNSER on (H, A). Then,

1. (R, C) is said to be reflexive, if R(a, a) ∈ (R, C), ∀a ∈ A.
2. (R, C) is said to be symmetric, if R(a, b) ∈ (R, C)⇒ R(b, a) ∈ (R, C), ∀(a, b) ∈ C ⊆ A× A.
3. (R, C) is said to be transitive, if ∀a, b, c ∈ A, R(a, b) ∈ (R, C) and R(b, c) ∈ (R, C)⇒ R(a, c) ∈ (R, C).

Now, we propose the definition of equivalence CNSER along with an illustrative example,
followed by the definition of equivalence class in CNSES.

Definition 12. A CNSER (R, C) on a CNSES (H, A) is said to be equivalent if it is reflexive, symmetric
and transitive.

Example 4. Consider a CNSES (H, A) over a universe U, where U = {u1, u2} and A =

{(a1, p, 1), (a1, q, 0), (a2, p, 1)}, where X = {p, q} is a set of experts.
The CNSES (H, A) can be defined as follows:

(H, A) =
{(

(a1, p, 1), { 〈0.4ej0.9Π , 0.6ej0.1Π , 0.6ej0.1Π〉
u1

, 〈0.8ej0.5Π , 0.7ej0.3Π , 0.8ej0.7Π〉
u2

}
)

,(
(a1, q, 0), { 〈0.2ej0.5Π , 0.7ej0.1Π , 0.1ej0.3Π〉

u1
, 〈0.5ej0.6Π , 0.4ej0.6Π , 0.7ej0.4Π〉

u2
}
)

,(
(a2, p, 1), { 〈0.5ej0.3Π , 0.5ej0.2Π , 0.2ej0.2Π〉

u1
, 〈0.8ej0.8Π , 0.1ej0.4Π , 0.7ej0.3Π〉

u2
}
)}

.

Consider a CNSER (R, C) on (H, A) defined as:

(R, C) =
{(

((a1, p, 1), (a1, p, 1)), { 〈0.4ej0.9Π , 0.6ej0.1Π , 0.6ej0.1Π〉
u1

, 〈0.8ej0.5Π , 0.7ej0.3Π , 0.8ej0.7Π〉
u2

}
)

,(
((a1, q, 0), (a1, q, 0)), { 〈0.2ej0.5Π , 0.7ej0.1Π , 0.1ej0.3Π〉

u1
, 〈0.5ej0.6Π , 0.4ej0.6Π , 0.7ej0.4Π〉

u2
}
)

,(
((a1, p, 1), (a2, p, 1)), { 〈0.4ej0.3Π , 0.6ej0.2Π , 0.6ej0.2Π〉

u1
, 〈0.8ej0.5Π , 0.7ej0.4Π , 0.8ej0.7Π〉

u2
}
)

,(
((a2, p, 1), (a1, p, 1)), { 〈0.4ej0.3Π , 0.6ej0.2Π , 0.6ej0.2Π〉

u1
, 〈0.8ej0.5Π , 0.7ej0.4Π , 0.8ej0.7Π〉

u2
}
)

,(
((a2, p, 1), (a2, p, 1)), { 〈0.5ej0.3Π , 0.5ej0.2Π , 0.2ej0.2Π〉

u1
, 〈0.8ej0.8Π , 0.1ej0.4Π , 0.7ej0.3Π〉

u2
}
)}

.

The CNSER (R, C) is shown to be reflexive, symmetric and transitive. Hence, it is an equivalence relation.

Definition 13. If (H, A) is a CNSES, then the equivalence class of H(a) is defined as:

[H(a)] = {H(b) : H(b)RH(a), ∀a, b ∈ A}.

Example 5. Consider Example 4; we have:

[H((a1, p, 1))] = {H((a1, p, 1)), H((a2, p, 1))} = [H((a2, p, 1))].

This means that the approximation H((a1, p, 1)) is related to two approximations H((a1, p, 1)) and
H((a2, p, 1)). These two approximations are also related to H((a2, p, 1)).

Proposition 2. If (R, C) is an equivalence relation on a CNSES (H, A), then for any H(a) and H(b) ∈ (H, A),
we have H(a)RH(b), if and only if [H(a)] = [H(b)].
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Proof. (⇒) Suppose H(a)RH(b). Let H(α) ∈ [H(a)]. Then, H(α)RH(a), and since (R, C) is transitive,
it follows that H(α)RH(b). Hence, H(α) ∈ [H(b)] and, thus, [H(a)] ⊆ [H(b)]. In the same manner,
[H(b)] ⊆ [H(a)]. Therefore, [H(a)] = [H(b)].

(⇐) Suppose [H(a)] = [H(b)]. Since (R, C) is reflexive, then H(a)RH(a). Hence, H(a) ∈
[H(a)] = [H(b)] and, thus, H(a)RH(b). Therefore,
H(a)RH(b), if and only if [H(a)] = [H(b)].

6. Conclusions

We have established a novel structure for the relation between two complex neutrosophic soft
expert sets, called the complex neutrosophic soft expert relation. We defined the concept of the complex
neutrosophic soft expert set and the Cartesian product of two complex neutrosophic soft expert sets as
a prerequisite to define the CNSER. A real-life problem was discussed and analyzed, using the key
features of CNSER. Then, a generalized algorithm is introduced and applied to the CNSER model
to solve an MADM problem. A comparison of the current models to the CNSER was presented,
and the preferability of CNSER was revealed. We then presented the inverse and complement of
CNSER and the composition of CNSERs and derived some properties of CNSER along with illustrative
examples. Finally, the concepts of equivalence relations and equivalence classes of CNSESs were
defined. CNSER seems to be a promising new concept, paving the way toward numerous possibilities
for future research. A neutrosophic cognitive map is a neutrosophic directed graph that depicts the
causal interaction between the various parameters. Introducing CNSER to neutrosophic cognitive
map applications may provide a powerful tool for describing the time of the interaction between the
neutrosophic cognitive map parameters where the knowledge of experts is contemplated. The structure
of the CNSER is also rehabilitated to describe the relations between periodic phenomena that have
uncertain data where the amplitude terms represent the uncertainty and the phase terms represent the
periodicity semantic. Thus, the CNSER may provide a powerful framework to represent problems with
uncertainty and periodicity simultaneously in the field of physics, signal processing, stock marketing,
and so on. The CNSER may also be used as a new descriptor for the relation between vector quantities,
where the amplitude and phase terms of the CNSER, respectively, represent the magnitudes and the
directions of the vector quantities.
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