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Abstract

We suggest two schemes to generate bipartite entangled states by
means of a quantum measurement at a third party. The two parties
to be entangled have separate entangled states with the third party
in modes C1 and C2. In our first scheme we generate entanglement
between the two remote parties by considering the modes C1 and C2

indistinguishable. However, in the second scheme we generate entangled
states by considering the two modes to be distinguishable. We discuss
that the first scheme of remote entanglement generation can be extended
to any N number of parties. On making a quantum measurement on
this system, we develop quantum networks, based on W-states and other
multipartite symmetric entangled states.

1 Introduction

Quantum networking is an art of communication between many parties based
on quantum principles. The presence of quantum channels in quantum net-
working provides an advantage on its classical counterpart. Entanglement
provides a successful mean to develop quantum channels, and, hence serves as
an essential element in quantum communication [1, 2, 3], quantum cryptog-
raphy [4, 5, 6, 7], and quantum computation [8, 9]. In this paper we suggest
techniques to generate entanglement between remote parties, far apart from
each other and without any means to generate entanglement directly. Further-
more, we show that generalization of our scheme leads us to develop quantum
networks.

The generation of bipartite entanglement has been performed successfully
between two electromagnetic cavities [10, 11, 12, 13], multimodes of a sin-
gle cavity [14], Bose-Einstein condensates [15, 16, 17, 18], internal states of
atoms [19, 20, 21, 22, 23, 24, 25], and in ions [26] . In order to generate these
entanglements, we use an entanglement generator which may be an excited
atom [10, 11, 14] or a cavity field [19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. In
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our scheme quantum measurement process plays the role of quantum entan-
glement generator. A fascinating question is the development of multipartite
entanglement [29, 30, 31, 32], which may lead us to quantum networks. It has
been discussed [33, 34, 35] that a finite system of N qubits, in which every pair
out of N (N − 1) /2 pairs is entangled, makes a quantum network. Physical
realization of such systems in laboratory experiments sets an interesting goal
for the experimentalists as well. In this paper, we discuss that our system
acts as an interesting playground to develop quantum networks accessible in
laboratory.

In our scheme we have two remote parties, Alice and Bob, which have elec-
tromagnetic cavities separately entangled with a third cavity of Charles. With
the help of this system: (i) We develop bipartite entanglement between the two
remote cavities of Alice and Bob in modes C1 and C2, respectively, by means
of quantum measurements at the cavity of Charles. In this scheme we consider
the modes C1 and C2 as indistinguishable. This provides an information trans-
fer capability between Alice and Bob; (ii) We develop tripartite entanglement
of the entangled states, namely –super entanglement, via quantum measure-
ment at Charles, by considering separate entangled states of Alice and Bob
with Charles as distinguishable. We show that generalization of remote entan-
glement from two party system to N party system leads us to develop quantum
networks between the N parties. The so-developed quantum network fabri-
cation technique makes it possible to realize quantum networks corresponding
to maximally entangled totally symmetric W-states and to other multipartite
totally symmetric entangled states.

We have organized our paper, so that, in Sec. II, we present our system. In
Sec. III, we develop entanglement between two remote parties for indistinguish-
able modes, whereas, in Sec. IV, we develop a three party super-entanglement,
using distinguishable modes. In Sec. V, we discuss quantum entanglement
which we may obtain as a generalization of our scheme of remote entangle-
ment from two cavities to many cavities and leading to quantum networks.

2 The Model

We consider a three party system of Alice, Bob and Charles, such that, Alice-
Charles and Bob-Charles systems are in entangled states. We may engineer
such entangled state by following the scheme suggested in Ref. [10]. We con-
sider a two level atom, initially prepared in the excited state, with transition
frequency ν1 between the two levels. Moreover we take the atom in resonance
with the cavity mode C1, as shown in Fig. 1. The atom propagates through
the cavities A and C, of Alice and Charles, respectively. After its propagation
through the two cavities we measure the atom in ground state. Therefore, it
contributes a photon of frequency ν1, in either of the two cavities which leads



Extended entanglement to quantum networks 735

to a maximal entangled state between A and C, viz.,

|A C1〉 =
1√
2

[|1 0〉 + |0 1〉] . (1)

In order to generate the entangled states we use identical high-Q cavities of
few centimeters in length. Moreover, we use the atoms with the two atomic
levels as circular Rydberg levels [10, 14, 20], which have large radiative decay
times and are strongly coupled to microwaves. The interaction time of atom
moving with velocity 400m/s is of the order of few microseconds. Hence cavity
with life time of the order of few milliseconds ensures that atom does not
undergo radiative decay during its propagation through the cavity. We may
follow the same procedure to develop entanglement between cavities B and C,
by using another atom in excited state with transition frequency ν2 which is
in resonance with the cavity mode C2. This provides the entangled state as

|B C2〉 =
1√
2

[|1 0〉 + |0 1〉] . (2)

Thus for the complete system of Alice, Bob and Charles, we may express the
combined state as

|A B C1 C2〉 =
1

2
[|1 1 0C1 0C2〉 + |0 0 1C1 1C2〉

+ |0 1 1C1 0C2〉 + |1 0 0C1 1C2〉]. (3)

These four different terms describe that in cavity C, there may exist (i) no
photon of either of the two modes; (ii) both the photons of the two modes;
(iii) one photon in mode C1 with no photon in mode C2; and (iv) no photon
in mode C1 and one photon in mode C2, with the same probability.

3 Remote Entanglement generation

We consider that the cavities A and B are far apart so that there is no pos-
sibility to generate entanglement between them directly. However, to develop
remote entanglement between cavities A and B, of Alice and Bob, respectively,
we may use the three party system discussed in Sec. II. We consider that the
cavities A and B are separately entangled with the cavity C, in modes, C1 and
C2 which are identical as ν1 = ν2. Under the condition of indistinguishability
of photons in cavity C, we may express the complete state of the system, as

|A B C〉 =
1

2
[|1 1 0〉 + |0 0 2〉 + |0 1 1〉 + |1 0 1〉] . (4)

Measurement of the electromagnetic field by Charles in the cavity C would
lead to the collapse of the combined state of the system. As a result of this
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measurement, Charles may find one of the following cases: no photon in cavity
C of Charles leaving the cavities A and B in definite state, that is, |A B〉 = 1

2
|1

1〉; two photons in the cavity C, leaving the states of cavities A and B in
vacuum state, that is, |A B〉 = 1

2
|0 0〉; one photon in the cavity C which

gives partial information about the states of cavities A and B, as the detected
photon may belong to either of the two cavities. In the last case, measurement
of one photon in cavity C leaves two possibilities: either the cavity A possesses
the remaining one photon and the cavity B is in vacuum state, or, the cavity A
is in vacuum state and cavity B possesses one photon. Hence, we may express
the cavity field state as

|A B〉 = 〈1|A B C〉 =
1

2
[|1 0〉 + |0 1〉] . (5)

Therefore, we find that the measurement process has disentangled the cavity C
from the cavities A and B. In addition it has led to entangle the cavity A and
the cavity B with a probability of 1/2. This enables Alice and Bob to develop
quantum channel between them and to share any information independently.

4 Super-Entanglement Generation

The three party system discussed in Sec. II, may provide a possibility to gener-
ate entanglement of the already entangled states, that is, super-entanglement.
The super-entanglement is based on quantum measurement by Charles of cav-
ity C when the modes C1 and C2 are distinguishable. The initial state of the
complete system is a product state expressed in Eq. (3).

In order to generate three party super-entanglement Charles uses a three
level atom in Λ configuration. The atom is initially prepared in the superposi-
tion state of lower two levels, that is levels |1〉 and |2〉. The atomic transition
from level |1〉 to |3〉 is in resonance with the field mode C1 and from atomic
level |2〉 to |3〉 is in resonance with the field mode C2 of the cavity C. After
its interaction with the cavity C, Charles measures the atom in excited state.
This measurement process leaves the three party system with super entangle-
ment. The measurement process, 1√

2
(〈1C1| + 〈1C2|) |A B C1 C2〉 leads us to

the super-entangled state, expressed as,

|Ψ〉 =
1√
2

(〈1C1 | + 〈1C2 |) |A B C1 C2〉

=
1

2
[|0〉|B C2〉 + |A C1〉|0〉]

=
1

2
[|0〉|φ〉 + |φ〉|0〉] , (6)

where, |φ〉 is the already entangled state |B C2〉 or |A C1〉, given in Eqs. (1)
and (2) , respectively.
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5 Quantum Networks: Generalization of Re-

mote Entanglement

We generalize bipartite remote entanglement generation scheme, discussed in
Sec. III, to any N number of electromagnetic cavities. This helps us to develop
quantum system where each of the N cavities is entangled with the cavity C,
as shown in Fig. 2(a). This leads us to generate quantum networks based on
any symmetric state. For the purpose we perform quantum measurement of
the cavity field state in cavity C.

The given experimental procedure enables us to generate all possible quan-
tum networks based on totally symmetric entangled states. These are the
states which are invariant under the interchange of any two cavities in the
network. These also include N -party W-states which have maximum bipartite
degree of entanglement. In totally symmetric states each cavity of the network
is equally entangled with every other cavity in the system. As discussed in Sec.
III, we note that remote entanglement can be generated in laboratory, making
our system experimentally accessible.

In order to generalize remote entanglement, we consider a system of N
cavities, namely A1, A2,....,AN . We generate separate entangled state of each
of the N cavities with a cavity C, by following the scheme, given in Sec II.
All N cavities are entangled in the same mode, so that photons belonging to
different cavities are indistinguishable from each other. Moreover, each of the
cavities A1, A2,....,AN , may have either zero or one photon which makes them
act as a qubit. We may represent the combined state of the complete system
as,

|Φ〉 =
1√
2N

N∑

i=0

|Ψi〉|N − i〉. (7)

Here, |Ψi〉 represents the ith state of N cavities together, whereas, |N − i〉
represents the corresponding state of the cavity C in the system. We may
express |Ψi〉, as

|Ψi〉 = |i, N − i〉, (8)

where, |i, N − i〉 indicates a totally symmetric entangled state including i zeros
and N − i ones in all permutations. For example, for N = 3 and i = 1, we
may express |Ψ1〉 as

|Ψ1〉 = [|1 1 0〉 + |1 0 1〉 + |0 1 1〉] ,
which remains invariant by interchanging any two of the cavities. Each |Ψi〉
contains N !/i! (N − i)! permutations which act like quantum registers [35] of
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size N each. All the N cavities have separate identical entangled state with
cavity C initially, however, no entanglement exists between them. Therefore,
the cavity C acts like a hub in the system, as shown in Fig. 2(a).

A measurement on cavity C of the cavity field photon number will generate
entanglement between these remote cavities. The measurement process at
cavity C, may find photons, from 0 to N in number. In addition, it leads to
disentangle cavity C from the rest of the cavities, and to develop entanglement
between the N cavities.

A quantum network relies on multipartite entanglement such that any two
of the parties can share entangled state even when the information about the
remaining N − 2 parties is lost. In a system of N qubits it is not possible
to get such bipartite entanglement with degree of entanglement as one [36].
The maximum possible bipartite entanglement is obtained when the N party
system is in totally symmetric Werner state [37, 38], that is, when all except one
qubit are either in state |0〉 or |1〉 in all permutations [33, 34, 35, 38]. For such
states each cavity is equally entangled with every other cavity in the network
as shown in Fig. 2(b). We may define the degree of bipartite entanglement
for the state as a ratio between the number of entanglements associated with
each party and the total number of bipartite entanglements present in the
system. Since in an N party W-state, there are N − 1 bipartite entangled
pairs associated with each party and there are N (N − 1) /2, total entangled
pairs in the system, therefore, we find the degree of bipartite entanglement in
the system as 2/N . This result has also been discussed in Ref. [33, 34, 38].
Hence, we see that in W-state degree of entanglement is 1 for a bipartite system
but decreases as the number of parties in the network increases.

In our system, we may obtain all possible totally symmetric entangled
states, depending upon the number of photons detected in cavity C. We get
W-state whenever we detect N − 1 number of photons in the cavity C. For
such detection, Eq. (7) leads us to

|W 〉 = 〈N − 1|Φ〉, (9)

=
1√
2N

|N − 1, 1〉. (10)

In the above state all parties are equally entangled and it gives maximum
bipartite entanglement. The probability of getting such state in our system
is N/2N . We may develop another quantum network based on W-state by
detecting 1 photon in cavity C. This leads to the state where all except one
cavity are in state |0〉, so that, we find the N-partite system as

|W 〉 = 〈1|Φ〉, (11)

=
1√
2N

|1, N − 1〉, (12)
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which leads to maximum bipartite entanglement in the network. The proba-
bility of developing such network is the same as earlier.

6 Discussion

In this paper we have suggested techniques to establish entanglement between
remote parties by means of quantum measurements. In Sec. II, we discuss
the entanglement generation via quantum measurement on a third party C
which has separate entangled state with the two parties. This remote entan-
glement occurs under the condition that the third party is separately entangled
with each of the two parties in the same optical mode. However, if the third
party entanglement with the two parties occurs in different optical modes, we
generate super-entanglement, that is, the entanglement between two already
entangled states. The generation of this state requires that the measurement
process detects only one photon without being able to differentiate between
the two modes.

We have developed quantum networks between N parties by extending
the remote entanglement scheme from two cavity system to N cavity system.
Quantum measurement of the field photon number at the cavity C, which
acts like a hub in the system, leads to develop quantum networks. Depending
upon the number of photons, 1 or N − 1, detected in the cavity C, we may
develop quantum networks in W-state. Such networks behave as optimum
quantum networks as there exist maximum bipartite entanglement for any
two communicating parties out of all. Detection of field photon number in
between one and N − 1, leads to develop quantum networks based on other
totally symmetric entangled states.
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Figure 1: The experimental setup: The two cavities of Alice and Bob have
separate entanglement with the cavity of Charles, in modes C1 and C2 with
frequency ν1 and ν2, respectively. In order to develop remote entanglement
we make measurement of the cavity field at the the cavity of Charles, keeping
the two modes indistinguishable. The distinguishability of the two modes
generates super-entanglement.

Figure 2: Quantum networks: Generalization of the remote entanglement
scheme from two cavity system to N cavity system leads to generate quan-
tum network. In case we measure one photon or N − 1 photons at cavity C of
Charles we develop networks based on W-state as shown in (b).
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