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Abstract

Based on continuous wavelet transform (CWT), we show that the resolution of a recurrence tracking
microscope (RTM) is enhanced to subnanometer scale. Our approach helps us to read information
on frequency bands, time of revivals, and corresponding time of fractional revivals more accurately.
We demonstrate that wavelet analysis provides a deeper information on the phenomena of quantum
recurrences in general. Our analytical results show very good agreement with numerical results based
on experimental parameters.
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1. Introduction

Position sensors with nanometer resolution is a major area of current research and has attracted great

attention from the scientific community [1–4]. Historically, the development of the electron microscope

and scanning probe microscope (SPM), separately based on imaging and sensing of a given sample

surface, respectively, has been rewarded the Nobel Prize in 1986 [5]. Resolution enhancement of optical

microscopes beyond the diffraction limit has been acknowledged by the award of the Nobel Prize in 2014

to Eric Betzig, Stefan W. Hell, and William E. Moerner [6–8].

Optical microscopes with enhanced resolution have the problem of sample heating and damage to it

due to long exposure times. The scanning tunneling microscope (STM) based on quantum tunneling phe-

nomena probes a surface with high accuracy [9,10]. It has limitations, however, for work on conducting

and nonconducting surfaces. Moreover, the impurity atoms introduce unwanted structures in scanning

surfaces via STM. The atomic force microscope (AFM), another important form of SPM, has problems

due to the diffraction limit.
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The recurrence tracking microscope (RTM), based on the phenomena of quantum recurrences, has

advantages over STM and AFM [11]. In RTM, the quantum evolution of a wave packet shows revival

behavior and reappears when it displays maximum constructive interference and, therefore, partially or

completely regains its initial form during the temporal evolution. The phenomena of quantum revival

have been studied over the past decades in undriven [?,?,?, 12] and driven systems [16].

To enhance the RTM resolution, we consider the signal processing in the frequency domain of a signal

g(t). This can be obtained, in view of the Fourier transform (FT) [17], as

g(ω) =

∫ +∞

−∞
g(t)e−2πift dt. (1)

The FT provides the representative frequency components, which are involved in the power spectrum

of a signal. Information on time and frequency is simultaneously required in the analysis of a multiple

component signal, which we do using the wavelet transform, in order to obtain the time–frequency

representation of a signal simultaneously [18].

The wavelet transform is applied to identify the nanotopography of crystal surfaces [19, 20] and to

determine the birefringence dispersion in optical fibers [21]. Furthermore, it has been shown that the

use of the wavelet transform can be very effective with atomic force microscope (AFM) data analy-

sis [22]. The wavelet transform is also a very useful technique in filtering low-frequency structures in

STM [23] for extracting weak signals from a high-noise background [24], in analyzing quantum wave

packet dynamics [25,26], and in quantum field theory [27–30].

In our work, we use the method of continuous wavelet transform (CWT) for the time–frequency

analysis of a material wave packet in RTM. We reconstruct each time harmonic of the material wave

packet across its frequency, which on the one hand increases the conceptual understanding of the quantum

recurrences and on the other hand increases the resolution of RTM. The CWT Tg(t)(f, τ) of a signal g(t)

can be defined as

Tg(t)(f, τ) =
√
f/f0

∫ +∞

−∞
g(t)h∗(f/f0)(t− τ) dt,

where h(t) is known as the mother wavelet [18] and the ratio (f0/f) is the scaling parameter.

Let us assume that the wavelet is centered at time zero and oscillates with frequency f0. The wavelet

basis function h(f/f0)(t− τ) has a variable length and width according to frequency f at different stages

τ of the signal. The resulting 2D square magnitude display of the transformed function Tg(t)(f, τ) is

known as a scalogram,

h(t) = π−1/4e2πif0te−t
2/2,

where f0 is the central frequency of the wavelet. To construct the translated and dilated Morlet wavelet,

we replace t by (f/f0)(t− τ) to get

Tg(t)(f, τ) = π−1/4
√
f0/f

∫ +∞

−∞
g (τ + ζf0/f) e−if0ζe−ζ

2/2 dζ,

where ζ = (f/f0)(t− τ) and Tg(t)(f, τ) is the CWT for a signal g(t), in view of the Morlet wavelet.

The layout of this paper is as follows.

400



Volume 38, Number 5, September, 2017 Journal of Russian Laser Research

In Sec. 2, we briefly explain the RTM and calculate the autocorrelation function associated with

matter waves. In Sec. 3, the time–frequency representation of the autocorrelation function is carried out

using CWT. We dedicate Sec. 4 to resolution enhancement in the RTM by applying the time–frequency

analysis developed.

2. Matter Waves in RTM

During the time evolution, a material wave packet manifests decoherence and coherence phenomena

as it experiences destructive and constructive interference leading to quantum recurrences. As the wave

packet follows the classical trajectory in its early evolution, it reconstructs itself after the classical period

Tcl. Thereafter, the wave packet dynamics displays a gradual increase in destructive interference, which

results in a collapse of the wave function. We observe quantum revival phenomenon in the long time

domain, which is the manifestation of ultimate constructive interference [12].

In the recurrence tracking microscope, we propagate a material wave packet, which experimentally

represents a cold atom moving under the gravitational field. The atom bounces off over an atomic mirror

made up of an evanescent wave above a dielectric surface, connected with a cantilever. The other end

of the cantilever probes the unknown surface. In order to calculate the temporal evolution of the wave

packet, we calculate the autocorrelation function, defined as

A(t) =
∑
n

|an|2e−iEnt/~. (2)

Here, the probability amplitude an can be obtained mathematically, and En defines the energy eigenvalue.

The energy eigenvalue associated with the triangular well potential reads

En =
(
F 2~2/2m

)1/3
zn, (3)

where zn are the zeros of the Airy function [32] and F = mg. In the case of large quantum numbers, it

can be approximated as zn = [(3π/2)(n− 1/4)]2/3. Since the distribution |an|2 peaks around the average

quantum number n0, we expand the energy eigenvalue around the average quantum number n0, such

that ∆n = n− n0 � n0 [12]; therefore, we have

exp

(
−iEnt

~

)
∼= exp

{
−i
(
En0 +

2π(n− n0)
Tcl

+
2π(n− n0)2

Trev
+

.. .

)
t

~

}
. (4)

The corresponding classical and quantum revival times for the RTM are Tcl = 2
√

2mz0/F and Trev =

16mz20/π~, respectively.

In order to study the time evolution, we calculate the absolute square of the autocorrelation function,

defined as

g(t) =
∑
n,m

|an|2|am|2e−iEnmt/~, (5)

where Enm = En − Em. The autocorrelation function for the material wave packet for a certain fixed

position of the cantilever is shown in Fig. 1 b.

In the next section, we explain revival and fractional revivals in the time–frequency domain and plot

a scalogram, which indicates them in the time–frequency plane and determines their order.
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3. Time–Frequency Analysis

The continuous wavelet transform (CWT) for the autocorrelation function g(t) given in Eq. (5) is

Tg(t)(f, τ) = π−1/4
√
f0/f

∑
n,m

|an|2|am|2e−iEnmτ/~Inm, (6)

where Inm =

∫ +∞

−∞
e−(iEnmf0ζ)/f e−2πif0ζ e(−1/2)ζ

2
dζ. Solving Inm and using the Taylor series expansion

of energy eigenvalues for n and m, as given in Eq. (4), for the CWT denoted as Tg(t)(f, τ), we obtain

Tg(t)(f, τ) = v
∑
n,m

| cn,m |2 e−ixnmτrn,m. (7)

where v = π−1/4
√

2πf0/f , xnm = 2π(n −m) [(1/Tcl) + (n+m− 2n0)/Trev], | cn,m |2=| an |2| am |2,
and rn,m = exp [−(1/2) (2πf0 + (f0/fxnm))]2.

We perform a frequency domain analysis of the autocorrelation, in view of the fast Fourier trans-

form (FFT), which is an efficient algorithm of generating the Fourier transform (FT).

Fig. 1. The autocorrelation function of a material wave packet in a recurrence tracking microscope (a). We
placed a Gaussian wave packet at z0 = 5.65 µm, with ∆z = 0.226 µm above the surface of the optical crystal at
t = 0 [31]. For the case of cesium (Cs) atom corresponding to the classical and revival times occurring at 2.14
and 348 ms, respectively, the FFT of the autocorrelation function determines all spectral components (b) and
the time–frequency representation of the autocorrelation function (c) using the CWT, which explains the partial
fractional revival across the corresponding frequency bands. Here, |Tg(t)(τ, f)|2 is scaled by 10−3.
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The main advantage of the FFT is its shorter execution time [34] due to the decrease in the number

of calculations needed to analyze the waveform.

We plot the FFT of the autocorrelation function, which provides frequency components that exist

in the autocorrelation function shown in Fig. 1 a. Each component of the autocorrelation function can

be reconstructed across its frequency, which helps in understanding the role of frequency in quantum

recurrence phenomena. Across each frequency band, as shown in Fig. 1 a, there exists a time harmonic,

which can be reconstructed using CWT, as given in Eq. (7).

The CWT of the material wave packet Tg(t)(f, τ) maps partial fractional revivals across their cor-

responding frequency bands, as shown in Fig. 1 c. This shows the role of favorable frequencies that

contribute to fractional revivals of the wave packet. The sharp peaks and neighboring patches in the

scalogram across different frequencies and times identify changes in amplitude of the autocorrelation func-

tion over the evolution time. Each sharp peak and corresponding patch appearing in the time–frequency

distribution corresponds to a specific partial fractional revival of the wave packet.

The main advantage obtained from the continuous wavelet transform (CWT) is the reconstruction

of the autocorrelation function for a specific frequency band and localization of fractional revivals in

the time–frequency plane. It is important to note that the maximum value of the transformed function

Tg(t)(f, τ), as given in Eq. (7), is at f = −xnm/2π. Therefore, we obtain

f = (m− n) (1/Tcl) + [(m+ n− 2n0)/Trev] . (8)

Setting n = n0 and m = n0 + y, we arrive at

f = (y/Tcl) [1 + yTcl/Trev] . (9)

Considering the approximation as Tcl/Trev � 1, we derive the central frequency of each frequency

band, shown in Fig. 1 a and c, as follows:

f = (y/2)
√
g/2z0, (10)

where y is a positive integer, y = 1, 2, 3, 4 . . .

The coherent addition of terms given in Eq. (6) would require that the terms corresponding to the

time-dependent exponential be not dependent on n and m, i.e., τEn,m = τEn′,m′ . Hence, the time τ at

which these terms add up coherently to give a peak structure is

τ = (s/2y)Trev, (11)

where s is an integer such that s = 1, 2, 3 . . .

From Eq. (10), we obtain the central frequency of the lowest band by setting y = 1. The time

τ = (s/2)Trev corresponding to the lowest frequency band defines a specific set of partial fractional

revivals, as shown in Fig. 2 a. Similarly, the set of partial fractional revivals occurring across the next

frequency band (y = 2) corresponds to τ = (s/4)Trev; see Fig. 2 b. This process can be extended for

higher frequency bands as well; see Fig. 2 c and d.

Across each frequency band, there is a specific set of partial fractional revivals. Hence, we conclude

that Eqs. (10) and (11), respectively, provide the required resolution in frequency and measurement of

time to reconstruct fractional revivals in the autocorrelation function.

A partial fractional revival seems to be more prominent, which helps to identify the exact location

of a fractional revival. Hence, we note that the time–frequency analysis provides detailed information
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Fig. 2. The distribution |Tg(t)(τ, f)|2 for f = 0.467 KHz (a), 0.935 KHz (b), 1.401 KHz (c), and 1.869 KHz (d).
Here, |Tg(t)(τ, f)|2 is scaled by 10−3.

Fig. 3. The peaks corresponding to
half fractional revival time as a func-
tion of time τ (on the left). Here, the
uncertainty around the revival time
∆T is large for the lowest frequency
band (c), whereas it decreases grad-
ually for higher frequency bands (b
and a). A section of the scalogram
shows partial half-fractional revival
in the frequency–time plane (on the
right).

on the role of constructive and destructive interferences in quantum recurrences. The constructive and

destructive interferences occur among time series harmonics, as shown in Fig. 2 a–d, resulting in periodic

collapse and revival of the wave packet.
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4. Resolution Enhancement in the RTM

A change in the initial height of the atom above the atomic mirror modifies the revival time. In the

RTM, a variation of the revival time during an experiment measures the nanostructures on the surface

under study. The revival of the wave packet Trev corresponds to the initial height z0, which varies as

the cantilever moves up or down due to the nanostructures on the surface. The uncertainty ∆T in

measurement of the revival time is proportional to the uncertainty in the position of nanostructures ∆z0.

We express ∆z0 as

∆z0 = γ∆T, (12)

where γ = z0/2Trev. The reduction in uncertainty in the position of the cantilever corresponds to

improved enhancement of the size of nanostructures on the sample surface. We write it as

a = a1 + ∆z0, (13)

where a1 is the size of the nanostructure and a is the experimentally observed size of the nanostructure

with a certain uncertainty ∆z0.

Table 1. The Uncertainty ∆T in Partial

Half-Fractional Revival Time Calculated at

(3/4)|Tg(t)(τ, f)|2 and the Corresponding Uncer-

tainty ∆z0 in the Measurement of the Size of

Nanostructures.

S. No. Frequency, KHz ∆T , ms ∆z0, nm

1 0.46 ∼= 5 ∼= 4

2 0.93 ∼= 2 ∼= 1.96

3 1.8 ∼= 1 ∼= 0.9

4 3.6 ∼= 0.7 ∼= 0.68

The uncertainty in partial fractional revivals

corresponding to higher frequency bands decreases

drastically which, as a result, makes the time of

revival measurements more certain, and this leads

to a higher resolution in the measurements of the

size of the nanostructure a. In Table 1, we show

the results of calculations of ∆T and ∆z0 for par-

tial half-fractional revival across various frequency

bands, including higher frequency bands ∆T ; as a

consequence, ∆z0 gradually decreases, which makes

partial half fractional revival more localized around

its occurrence time, as shown in Fig. 3.

We consider four different values of frequency,

as shown in Table 1. As we switch the device to

higher frequency, the quantity ∆z0 decreases, and as a result the resolution of RTM becomes better.

5. Conclusions

In this study, we showed that the application of the continuous wavelet transform (CWT) enables

us to improve the resolution of a recurrence tracking microscope (RTM) to subnanometer scale. The

approach developed provides a deeper insight into reading information on frequency bands, times of

revivals, and corresponding times of fractional revivals more accurately. The presently suggested approach

is implicapable to enhance the resolution of the recurrence tracking microscopes based on the surface

trap [35], a single magnetic mirror and two magnetic mirrors [36,37], and RTM based on the Bose–Einstein

condensates [38–40].
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