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Abstract: The objective of this article is to implement
and extend applications of adaptive control to anti-
synchronize different fractional order chaotic and hyper-
chaotic dynamical systems. The sufficient conditions for
achieving anti–synchronization are derived by using the
Lyapunov stability theory and an analytic expression of
the controller with its adaptive laws of parameters is
shown. Theoretical analysis and numerical simulations
are shown to verify the results.
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1 Introduction
We have seen some dramatic and amazing developments
in the research of fractional order chaotic dynamics, par-
ticularly with respect to their interaction with the other
fields of research and applications. There is now a devel-
oped science of fractional order chaos that has a vitally
strong interaction between theory and experiment. This is
a great leap compared to previously, in which theoretical
work existed largely in the absence of substantial exper-
imental realizations. This subject has gained much inter-
est and appreciation in practical applications such as vis-
coelastic systems, electrode-electrolyte polarization, elec-
tromagnetic waves, etc. [1, 2]. Issues such as synchroniza-
tion of fractional order chaotic systems in a broad variety
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of situations and the use of fractional order chaotic dy-
namics for various purposes are at the forefront of recent
applications in nonlinear science. This topic encompasses
a common link, which is uniting the knowledge of basic
mathematical properties of fractional order chaos and spe-
cific practical considerations of various applications [3, 4].
A wide variety of approaches have been proposed for the
synchronization of fractional order chaotic systems such
as adaptive control, sliding mode control, linear active
control technique, projective synchronization, andnonlin-
ear active control [5–30]. Another interestingphenomenon
discovered is anti–synchronization (AS) which is notice-
able in periodic oscillators. In the AS phenomenon, the
state vectors of the synchronized systems have the same
amplitude but opposite signs as those of the driving sys-
tem. Thus, the sum of two signals are expected to converge
to zero when AS appears. Several control methods have
been applied to anti–synchronize chaotic systems [31–35].
Fortunately, some existingmethods of anti–synchronizing
of integer order can be generalized to anti-synchronize
fractional order chaotic systems through some rigorous
mathematical theory. However, in practical engineering
situations, the parameters are probably unknownandmay
change from time to time. Therefore there is a vital need to
effectively anti-synchronize two chaotic systems (identical
and different) with unknown parameters. This is typically
important in theoretical research aswell as in practical ap-
plications. Among the aforementionedmethods, the adap-
tive control strategy is an efficient control method to anti–
synchronize fractional order chaotic chaotic systems. The
adaptive control method is used when some or all param-
eters of the chaotic systems are unknown. The significant
features of the adaptive control strategy include fast re-
sponse, robustness against perturbations, good transient
performance, and easy implementation in real applica-
tions. In (2013), Agrawal et. al [14] developed a novel
adaptive synchronization scheme associated with the pa-
rameter update rule for identical and nonidentical frac-
tional order chaotic systems with unknown parameters
for the synchronization of fractional order as well as inte-
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ger order chaotic systems. In spite of [14, 33–35], the epit-
ome of this paper centers on fractional order chaos anti–
synchronization between two fractional order chaotic sys-
tems, also the aforementioned method concerns synchro-
nizing two fractional order chaotic system with low di-
mensional attractors characterized by one positive Lya-
punov exponent. This feature limits the complexity of the
fractional order chaotic dynamics. It is believed that frac-
tional order chaotic systems with higher dimensional at-
tractors have much wider applications. The rest of the pa-
per is organized as follows. In section 2, we briefly de-
scribe the problem. In sections 3, we present the adap-
tive anti-synchronization schemewith a parameter update
law for two different chaotic systems. Section 4, presents
the adaptive anti-synchronization scheme with a parame-
ter update law for two different hyperchaotic systems. The
conclusion is given at the end.

2 Problem formulation

2.1 Preliminaries of fractional-order
calculus

There are several definitions of fractional derivatives, the
commonly used definition is the Riemann-Liouville defini-
tion, as follows:

aDqt z (t) =
dn
dtn J

n−q
t z (t) , q > 0, (1)

where n = ⌈q⌉, and

Jϑt ψ (t) = 1
Γ (ϑ)

t∫︁
0

ψ (υ)
(t − υ)1−ϑ

dυ, (2)

where 0 < ϑ ≤ 1 and Γ(.) is gamma function. The Caputo
differential operator of fractional order q is defined as

cDqt z (t) = J
n−q
t zn (t) , q > 0, (3)

where n = ⌈q⌉.

Lemma 1. [1, 14] In Riemann–Liouville derivatives if
p > q ≥ 0, m and n are integers such that 0 ≤ m − 1 ≤
p < m, 0 ≤ n − 1 < n, then we obtain

aDqt
(︀
aD−qt f (t)

)︀
= aDp−qt f (t) . (4)

Lemma 2. [1, 14] In Riemann–Liouville derivatives if
p > q ≥ 0,m and n are integers such that 0 ≤ m − 1 ≤ p <
m, 0 ≤ n − 1 ≤ q < n, then we obtain

aDpt
(︀
aDqt f (t)

)︀
=aDp+qt f (t) (5)

−
n∑︁
J=1

[︁
aDq−Jt f (t)

]︁
t=a

× (t − a)−p−J
Γ (1 − p − J)

.

2.2 Modified adaptive anti–synchronization

Consider the chaotic master system described by

Dqt x = f (x) + F(x)α, (6)

where x ∈ Ω1 ⊂ Rn is the state vector of system (6), α ∈ Rm

is the unknown parameter vector of the system, f (x) is an
n×1matrix, and F(x) is an n×mmatrix. Similarly, the slave
system described by

Dqt y = g(y) + G(y)β + u, (7)

where y ∈ Ω2 ⊂ Rn is the state vector of system (7), β ∈ Rq

is the unknown parameter vector of the system, g(y) is an
n × 1 matrix, G(y) is an n × q matrix, and u ∈ Rn is a con-
trol input vector. e = y+x is the anti–synchronization error
vector. Our goal is to design a controller u such that the tra-
jectory of the slave system (7)with initial conditions y0 can
asymptotically approach themaster system (6) with initial
conditions x0 andfinally implement anti–synchronization
in the sense that lim

t→∞
‖e‖ = lim

t→∞

⃦⃦
y(t) + x(t)

⃦⃦
= 0, where

‖ · ‖ is the Euclidean norm.

Theorem 1. If the nonlinear control function is se-
lected as

U = −f (x) − F(x)α − g(y) − G(y)β (8)
+ Dq−1t [F(x)(α − α̃) + G(y)(β − β̃)

−
(︁
Dq−1t e (t)

)︁ (t)−(q−1)−1
Γ (− (q − 1))

− ke]

and the adaptive laws of the parameters are taken as

˙̃α =[F(x)]Te, (9)
˙̃β =[G(y)]Te,

where α̂ = α − α̃, β̂ = β − β̃, k > 0 is a constant, q ∈ [0, 1]
is the order of the derivative, and α̃, β̃ are the estimated pa-
rameters of α and β, respectively.

Proof. FromEqs. (7) and (6)weget the error dynamical sys-
tem as follows:

Dqt e (t) = g (y) + G(y)β + f (x) + F(x)α + U . (10)

Inserting (8) into (10) yields the following:

Dqt e(t) = D
q−1
t [F(x)(α − α̃) + G(y)(β − β̃) (11)



306 | M.Mossa Al-Sawalha and Ayman Al-Sawalha

− (Dq−1t e(t)) (t)
−(q−1)−1

Γ(−(q − 1)) − ke].

If a Lyapunov function candidate is chosen as

V(e, α̂, β̂) = 1
2[e

Te + (α − α̃)T(α − α̃) (12)

+ (β − β̃)T(β − β̃))]

the time derivative of V(e, α̂, β̂) along the trajectory of the
error dynamical system (11) is

V̇(e, α̂, β̂) = [ėTe + (α − α̃)T ˙̃α + (β − β̃)T ˙̃β] (13)

Using Lemma 2 in Eq. (13) we get

V̇(e, α̂, β̂) = ([Dq−1t (Dqt e(t)) (14)

+ (Dq−1t e(t)) (t)−(q−1)−1
Γ (− (q − 1))

]

+ (α − α̃)T ˙̃α + (β − β̃)T ˙̃β)).

From Eqs. (9) and (13), we get

V̇(e, α̂, β̂) = [Dq−1t (Dq−1t [F(x)(α̃ − α) (15)
+ G(y)(β̃ − β)

− (Dq−1t e(t)) (t)
−(q−1)−1

Γ(−(q − 1))−ke]

+ (Dq−1t e(t)) (t)
−(q−1)−1

Γ(−(q − 1)) ]
T

+ (α − α̃)T ˙̃α + (β − β̃)T ˙̃β,

since ∀q ∈ [0, 1], (1 − q) > 0 and (q − 1) < 0. Now, using
Lemma 1 and Eq. (9), Eq. (15) reduces to

V̇(e, α̂, β̂) = [(F(x)(α − α̃) + G(y)(β − β̃) (16)

− (Dq−1t e(t)) (t)
−(q−1)−1

Γ(−(q − 1))−ek)

+ (Dq−1t e(t)) (t)
−(q−1)−1

Γ(−(q − 1)) ]
Te

− (α − α̃)T([F(x)]Te)
− (β − β̃)T([G(y)]Te)
= [(α − α̃)TF(x)T

+ (β − β̃)TG(y)T − keT ]e
− (α − α̃)T [F(x)]Te
− (β − β̃)T [G(y)]Te
= −keTe ≤ 0.

Since V and V̇ are positive and negative semi-definite re-
spectively, therefore, according to the Lyapunov stability
theory [36], the response system (7) is both globally and
asymptotically anti–synchronized to the drive system (6).
This completes the proof.

3 Adaptive anti–synchronization
between two fractional-order
chaotic systems

In order to achieve the behavior of anti–synchronization
between two fractional-order chaotic systems using modi-
fied adaptive control, we take the fractional-order chaotic
Lü [35] system to be the drive system and the fractional-
order chaotic Liu system [22] to be the response system.
The variables of the drive system are represented by the
subscript 1 and the response system by the subscript 2.
Both systems are described respectively by the following
equations:

dαx1
dα t = a1(y1 − x1), (17)

dαy1
dα t = −x1z1 + c1y1,

dαz1
dα t = x1y1 − b1z1,

and
dαx2
dα t = a2(y2 − x2) + u1, (18)

dαy2
dα t = b2x2 − x2z2 + u2,

dαz2
dα t = −c2z2 + d2x22 + u3,

where, U = (u1, u2, u3)T is the control function to be de-
signed. In order to determine the control functions to real-
ize adaptive anti–synchronization between the systems in
Eqs. (17) and (18), we add (17) to (18) and obtain

Dq1t e1(t) = a2(y2 − x2) + a1(y1 − x1) + u1, (19)
Dq2t e2(t) = b2x2 − x2z2 − x1z1 + c1y1 + u2,
Dq3t e3(t) = −c2z2 + d2x

2
2 + x1y1 − b1z1 + u3,

where e1 = x2 + x1, e2 = y2 + y1, and e3 = z2 + z1. Our goal
is to derive the controller U with a parameter estimation
update law such that Eqs. (18) globally and asymptotically
anti-synchronize Eqs.(17).

Theorem 2. The fractional-order chaotic Liu system
(18) can anti–synchronize the fractional-order Lü system
(17) globally and asymptotically for any different initial con-
dition with the following adaptive controller:

u1 = −a2(y2 − x2) − a1(y1 − x1) (20)
+ Dq1−1t [ã2(y2 − x2) + ã1(y1 − x1)

− (Dq1−1t e1(t))×
(t)−(q1−1)−1
Γ(−(q1 − 1))

− e1],
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u2 = −b2x2 + x2z2 + x1z1 − c1y1

+ Dq2−1t [b̃2x2 + c̃1y1 −
(︁
Dq2−1t e2 (t)

)︁
× (t)−(q2−1)−1
Γ (− (q2 − 1))

− e2

]︃
,

u3 = c2z2 − d2x22 − x1y1 + b1z1 + Dq3−1t [−c̃2z2
+ d̃2x22 − b̃1z1 − (Dq3−1t e3(t))

× (t)−(q3−1)−1
Γ(−(q3 − 1))

− e3],

and parameter update rules

˙̂a1 = (y1 − x1)e1, (21)
˙̂b1 = −z1e3,
˙̂c1 = y1e2,
˙̂a2 = (y2 − x2)e1,
˙̂b2 = x2e2,
˙̂c2 = −z2e3,
˙̂d2 = x22e3,

where â1, b̂1, ĉ1, â2, b̂2, ĉ2, and d̂2 are estimates of a1, b1,
c1, a2, b2, c2, and d2, respectively.

Proof. Applying the control law equation (20) to Eq. (19)
yields the resulting closed-loop error dynamical system as
follows:

Dq1t e1(t) = D
q1−1
t [ã2(y2 − x2) + ã1(y1 − x1) (22)

− (Dq1−1t e1(t))×
(t)−(q1−1)−1
Γ(−(q1 − 1))

− e1],

Dq2t e2(t) = D
q2−1
t [b̃2x2 + c̃1y1 − (Dq2−1t e2(t))

× (t)−(q2−1)−1
Γ(−(q2 − 1))

− e2],

Dq3t e3(t) = D
q3−1
t [−c̃2z2 + d̃2x22 − b̃1z1

− (Dq3−1t e3(t))×
(t)−(q3−1)−1
Γ(−(q3 − 1))

− e3],

where ã1 = a1 − â1, b̃1 = b1 − b̂1, c̃1 = c1 − ĉ1, ã2 = a2 −
â2, b̃2 = b2 − b̂2, c̃2 = c2 − ĉ2, and d̃2 = d2 − d̂2.

Consider the following Lyapunov function candidate:

V = 1
2(e

Te + ã21 + b̃21 + c̃21 + ã22 (23)

+ b̃22 + c̃22 + d̃22),

then the time derivative of V along the solution of the error
dynamical system equation (22) gives

V̇ = (eTe + ã1 ˙̃a1 + b̃1 ˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 (24)

+ b̃2 ˙̃b2 + c̃2 ˙̃c2 + d̃2 ˙̃d2).

Using Lemma 2 in Eq. (24) we get

V̇ = ([D1−q1
t (Dq1t e1(t)) + (D

q1
t e1(t)) (25)

× (t)−(q1−1)−1
Γ(−(q1 − 1))

]e1

+ ([D1−q2
t (Dq2t e2(t)) + (D

q2
t e2(t))

× (t)−(q2−1)−1
Γ(−(q2 − 1))

]e2

+ ([D1−q3
t (Dq3t e3(t)) + (D

q3
t e3(t))

× (t)−(q3−1)−1
Γ(−(q3 − 1))

]e3

+ ã1 ˙̃a1 + b̃1 ˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2 ˙̃b2 + c̃2 ˙̃c2 + d̃2 ˙̃d2
= ([D1−q1

t (Dq1−1t [ã2(y2 − x2) + ã1(y1 − x1) − (Dq1−1t e1(t))

× (t)−(q1−1)−1
Γ(−(q1 − 1))

− e1]) + (Dq1t e1(t)) ×
(t)−(q1−1)−1
Γ(−(q1 − 1))

]e1

+ ([D1−q2
t (Dq2−1t [b̃2x2 + c̃1y1 − (Dq2−1t e2(t))

× (t)−(q2−1)−1
Γ(−(q2 − 1))

− e2]) + (Dq2t e2(t)) ×
(t)−(q2−1)−1
Γ(−(q2 − 1))

]e2

+ ([D1−q3
t (Dq3−1t [−c̃2z2 + d̃2x22 − b̃1z1 − (Dq3−1t e3(t))

× (t)−(q3−1)−1
Γ(−(q3 − 1))

− e3])

+ (Dq3t e3(t)) ×
(t)−(q3−1)−1
Γ(−(q3 − 1))

]e3 + ã1 ˙̃a1 + b̃1 ˙̃b1 + c̃1 ˙̃c1

+ ã2 ˙̃a2 + b̃2 ˙̃b2 + c̃2 ˙̃c2 + d̃2 ˙̃d2,

since ∀q ∈ [0, 1], (1 − q) > 0 and (q − 1) < 0. Now, using
Lemma 1, Eq. (25) reduces to

V̇ = [ã2(y2 − x2) + ã1(y1 − x1) − e1]e1 (26)
+ [b̃2x2 + c̃1y1 − e2]e2
+ [−c̃2z2 + d̃2x22 − b̃1z1 − e3]e3
+ ã1(−(y1 − x1)e1) + b̃1(z1e3) + c̃1(−y1e2)
+ ã2(−(y2 − x2)e1) + b̃2(−x2e2) + c̃2(z2e3)
+ d̃2(−x22e3),
= −eTe ≤ 0.

Since V is positive definite and V̇ is negative definite in
the neighborhood of the zero solution of the system equa-
tion (22), it follows that lim

t→∞
‖e (t)‖ = 0. Therefore system

(18) can anti–synchronize system (17) asymptotically. This
completes the proof.

4 Numerical simulations
In the numerical simulations, the Adams-Bashforth-
Moulton method is used to solve the systems. The frac-
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Figure 1: State trajectories of drive system (17) and response system
(18): (a): Signals x1 and x2; (b): signals y1 and y2; and (c): signals
z1 and z2.

tional order is chosen as α = 0.95, and the unknown pa-
rameters are chosen as a1 = 35, b1 = 3, c1 = 20, and
a2 = 10, b2 = 40, c2 = 2.5, and d2 = 4, so that both sys-
tems exhibit a chaotic behavior. The initial values of the
fractional-order drive system (17), the fractional-order re-
sponse system (18) and the estimated parameters are arbi-
trarily chosen in the simulations as (x1(0) = 0.2, y1(0) =
0.6, z1(0) = 1), (x2(0) = 7, y2(0) = 11, z2(0) = 15), and
â1(0) = 0.2, b̂1(0) = 0.2, ĉ1(0) = 0.2 and â2(0) = 0.2,
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Figure 2: (a)–(b): Change in parameters a1 , b1 , c1 and
a2 , b2 , c2 , d2 of the drive system (17) and the response system
(18) with time t. (c): The error signals e1; e2; e3 of the drive system
(17) and the response system (18) under the controller (20) and the
parameters update law (21).

b̂2(0) = 0.2, ĉ2(0) = 0.2, d̂2(0) = 0.2, respectively. Anti–
synchronization of the systems (17) and (18) via the adap-
tive control law (20) and (21) are shown in Figs. (1)–(2).
Fig. (1) displays the state trajectories of the drive system
(17) and response system (18). Fig. (2) (a)–(b) show that the
estimates â1(t), b̂1(t), ĉ1(t) and â2(t), b̂2(t), ĉ2(t), d̂2(t) of
the unknownparameters converge to a1 = 35, b1 = 3, c1 =
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Figure 3: Fractional-order chaotic Lü system (solid line) and the
controlled fractional-order Liu system (dotted line).

20 and a2 = 10, b2 = 40, c2 = 2.5, d2 = 4 as t → ∞.
Fig. (2) (c) displays the anti–synchronization errors of sys-
tems (17) and (18). Fig. (3) shows that the fractional order
Liu system is controlled to be the fractional order Lü sys-
tem.

5 Adaptive anti–synchronization
between two fractional-order
hyperchaotic systems

In order to achieve the behavior of anti–synchronization
between two fractional-order chaotic systems using mod-
ified adaptive control, we take the fractional-order hyper-
chaotic Lorenz system [37] to be the drive system and the
fractional-order hyperchaotic Chen system [38] to be the
response system. The variables of the drive system are rep-
resented by the subscript 1 and the response systemby the
subscript 2. Both of the systems are described respectively
by the following equations:

dαx1
dα t = a1(y1 − x1) + w1, (27)

dαy1
dα t = c1x1 − x1z1 − y1,

dαz1
dα t = x1y1 − b1z1,

dαw1
dα t = −y1z1 + r1w1,

and

dαx2
dα t = a2(y2 − x2) + w2 + u1, (28)

dαy2
dα t = r2x2 − x2z2 + c2y2 + u2,

dαz2
dα t = x2y2 − b2z2 + u3,

dαw2
dα t = x2z2 + d2w2 + u4,

where U = (u1, u2, u3, u4)T is the control function to be
designed. In order to determine the control functions to re-
alize adaptive anti–synchronization between the systems
in Eqs. (27) and (28) , we add (27) to (28) and obtain

Dq1t e1(t) = a2(y2 − x2) + w2 + a1(y1 − x1) (29)
+ w1 + u1,

Dq2t e2(t) = r2x2 − x2z2 + c2y2 + c1x1 − x1z1
− y1 + u2,

Dq3t e3(t) = x2y2 − b2z2 + x1y1 − b1z1 + u3,
Dq4t e4(t) = x2z2 + d2w2 − y1z1 + r1w1 + u4,

where e1 = x2 + x1, e2 = y2 + y1 e3 = z2 + z1, and
e4 = w2 + w1 . Our goal is to derive the controller U with a
parameter estimation update law such that Eqs. (28) glob-
ally and asymptotically anti-synchronize Eqs.(27).

Theorem 3. The fractional-order hyperchaotic Lorenz
system (28) can anti–synchronize with the fractional-order
Chen system (27) globally and asymptotically for any differ-
ent initial condition with the following adaptive controller:

u1 = −a2(y2 − x2) − w2 − a1(y1 − x1) (30)
− w1 + Dq1−1t [ã2(y2 − x2) + ã1(y1 − x1)

− (Dq1−1t e1(t))×
(t)−(q1−1)−1
Γ(−(q1 − 1))

− e1],

u2 = −r2x2 + x2z2 − c2y2 − c1x1 + x1z1 + y1
+ Dq2−1t [r̃2x2 + c̃2y2 + c̃1x1 − (Dq2−1t e2(t))

× (t)−(q2−1)−1
Γ(−(q2 − 1))

− e2],

u3 = −x2y2 + b2z2 − x1y1 + b1z1
+ Dq3−1t [−b̃2z2 − b̃1z1 − (Dq3−1t e3(t))

× (t)−(q3−1)−1
Γ(−(q3 − 1))

− e3],

u4 = −x2z2 − d2w2 + y1z1 − r1w1

+ Dq4−1t [d̃2w2 + r̃1w1 − (Dq4−1t e4(t))

× (t)−(q4−1)−1
Γ(−(q4 − 1))

− e4],

and parameter update rules

˙̂a1 = (y1 − x1)e1, (31)
˙̂b1 = −z1e3,
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˙̂c1 = x1e2,
˙̂r1 = w1e4,
˙̂a2 = (y2 − x2)e1,
˙̂b2 = −z2e3,
˙̂c2 = y2e2,
˙̂r2 = x2e2,
˙̂d2 = w2e4,

where â1, b̂1, ĉ1, r̂1, â2, b̂2, ĉ2, r̂2, and d̂2 are estimates of
a1, b1, c1,r1, a2, b2, c2, r2, and d2 respectively.

Proof. Applying the control law equation (30) to Eq. (29)
yields the resulting closed-loop error dynamical system as
follows:

Dq1t e1(t) = D
q1−1
t [ã2(y2 − x2) + ã1(y1 − x1) (32)

− (Dq1−1t e1(t))×
(t)−(q1−1)−1
Γ(−(q1 − 1))

− e1],

Dq2t e2(t) = D
q2−1
t [r̃2x2 + c̃2y2 + c̃1x1

− (Dq2−1t e2(t))×
(t)−(q2−1)−1
Γ(−(q2 − 1))

− e2],

Dq3t e3(t) = D
q3−1
t [−b̃2z2 − b̃1z1

− (Dq3−1t e3(t))×
(t)−(q3−1)−1
Γ(−(q3 − 1))

− e3],

Dq4t e4(t) = D
q4−1
t [d̃2w2 + r̃1w1

− (Dq4−1t e4(t))×
(t)−(q4−1)−1
Γ(−(q4 − 1))

− e4],

where ã1 = a1 − â1, b̃1 = b1 − b̂1, c̃1 = c1 − ĉ1, r̃1 = r1 −
r̂1, ã2 = a2 − â2, b̃2 = b2 − b̂2, c̃2 = c2 − ĉ2, r̃2 = r2 − r̂2, and
d̃2 = d2 − d̂2

Consider the following Lyapunov function candidate:

V = 1
2(e

Te + ã21 + b̃21 + c̃21 + r̃21 + ã22 (33)

+ b̃22 + c̃22 + r̃22 + d̃22),

then the time derivative of V along the solution of the error
dynamical system equation (32) gives

V̇ = (eTe + ã1 ˙̃a1 + b̃1 ˙̃b1 + c̃1 ˙̃c1 + r̃1 ˙̃r1 (34)

+ ã2 ˙̃a2 + b̃2 ˙̃b2 + c̃2 ˙̃c2 + r̃2 ˙̃r2 + d̃2 ˙̃d2).

Using Lemma 2 in Eq. (34) we get

V̇ = ([D1−q1
t (Dq1t e1(t)) + (D

q1
t e1(t)) (35)

× (t)−(q1−1)−1
Γ(−(q1 − 1))

]e1

+ ([D1−q2
t (Dq2t e2(t)) + (D

q2
t e2(t))

× (t)−(q2−1)−1
Γ(−(q2 − 1))

]e2

+ ([D1−q3
t (Dq3t e3(t)) + (D

q3
t e3(t))

× (t)−(q3−1)−1
Γ(−(q3 − 1))

]e3

+ ([D1−q4
t (Dq4t e4(t)) + (D

q4
t e4(t))

× (t)−(q4−1)−1
Γ(−(q4 − 1))

]e4 + ã1 ˙̃a1 + b̃1 ˙̃b1 + c̃1 ˙̃c1 + r̃1 ˙̃r1

+ ã2 ˙̃a2 + b̃2 ˙̃b2 + c̃2 ˙̃c2 + r̃2 ˙̃r2 + d̃2 ˙̃d2
= ([D1−q1

t (Dq1−1t [ã2(y2 − x2) + ã1(y1 − x1)

− (Dq1−1t e1(t))×
(t)−(q1−1)−1
Γ(−(q1 − 1))

− e1])

+ (Dq1t e1(t)) ×
(t)−(q1−1)−1
Γ(−(q1 − 1))

]e1

+ ([D1−q2
t (Dq2−1t [r̃2x2 + c̃2y2

+ c̃1x1 − (Dq2−1t e2(t))×
(t)−(q2−1)−1
Γ(−(q2 − 1))

− e2])

+ (Dq2t e2(t)) ×
(t)−(q2−1)−1
Γ(−(q2 − 1))

]e2

+ ([D1−q3
t (Dq3−1t [−b̃2z2 − b̃1z1 − (Dq3−1t e3(t))

× (t)−(q3−1)−1
Γ(−(q3 − 1))

− e3]) + (Dq3t e3(t)) ×
(t)−(q3−1)−1
Γ(−(q3 − 1))

]e3

+ ([D1−q4
t (Dq4−1t [d̃2w2 + r̃1w1 − (Dq4−1t e4(t))

× (t)−(q4−1)−1
Γ(−(q4 − 1))

− e4])

+ (Dq4t e4(t)) ×
(t)−(q4−1)−1
Γ(−(q4 − 1))

]e4 + ã1 ˙̃a1 + b̃1 ˙̃b1 + c̃1 ˙̃c1

+ r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2 ˙̃b2 + c̃2 ˙̃c2 + r̃2 ˙̃r2 + d̃2 ˙̃d2,

since ∀q ∈ [0, 1], (1 − q) > 0 and (q − 1) < 0. Now, using
Lemma 1, Eq. (35) reduces to

V̇ = [ã2(y2 − x2) + ã1(y1 − x1) − e1]e1 (36)
+ [c̃2y2 + c̃1x1 − e2]e2
+ [−b̃2z2 − b̃1z1 − e3]e3 + [r̃2w2 + r̃1w1 − e4]e4
+ ã1(−(y1 − x1)e1) + b̃1(z1e3) + c̃1(−x1e2)
+ r̃1(−w1e4) + ã2(−(y2 − x2)e1) + b̃2(z2e3)
+ c̃2(−y2e2) + r̃2(−x2e3) + d̃2(−w2e4),
= −eTe ≤ 0.

Since V is positive definite and V̇ is negative definite in
the neighborhood of the zero solution of the system equa-
tion (32), it follows that lim

t→∞
‖e (t)‖ = 0. Therefore system

(28) can anti–synchronize system (27) asymptotically. This
completes the proof.
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Figure 4: State trajectories of drive system (27) and response system (28): (a): Signals x1 and x2; (b): signals y1 and y2; (c): signals z1 and
z2 and (d): signals w1 and w2.

6 Numerical simulations
In the numerical simulations, the Adams-Bashforth-
Moulton method is used to solve the systems. The frac-
tional order is chosen as α = 0.97, and the unknown pa-
rameters are chosen as a1 = 10, b1 = 8/3, c1 = 28, r1 =
−1 and a2 = 35, b2 = 3, c2 = 12, r2 = 0.5, d2 = 7,
so that both of the systems exhibit a hyperchaotic be-
havior. The initial values of the fractional-order drive sys-
tem (27), the fractional-order response system (28) and
the estimated parameters are arbitrarily chosen in simu-
lations as (x1(0) = 2, y1(0) = 2, z1(0) = 2, w1(0) = −2),
(x2(0) = 20, y2(0) = 10, z2(0) = 10, w2(0) = −15),
â1(0) = 10, b̂1(0) = 10, ĉ1(0) = 10, r̂1(0) = 10, and
â2(0) = 10, b̂2(0) = 10, ĉ2(0) = 10, r̂2(0) = 10 respec-
tively. Anti–synchronization of the systems (27) and (28)
via the adaptive control law (30) and (31) are shown in
Figs. (4)–(5). Fig. (4) displays the state trajectories of the
drive system (27) and the response system (28). Fig. (5) (a)–
(b) shows that the estimates â1(t), b̂1(t), ĉ1(t), r̂1(t) and

â2(t), b̂2(t), ĉ2(t), r̂2(t), d̂2(t) of the unknown parameters
converge to a1 = 10, b1 = 8/3, c1 = 28, r1 = −1 and
a2 = 35, b2 = 3, c2 = 12, r2 = 0.5, d2 = 7 as t →
∞. Fig. (5) (c) displays the anti-synchronization errors of
systems (27) and (28). Fig. (6) shows that the fractional-
order hyperchaotic Chen system is controlled to be the
fractional-order hyperchaotic Lorenz system.

7 Conclusion
In this paper, we have investigated the anti–
synchronization of two different fractional order chaotic
and hyperchaotic systems with uncertain parameters.
Theoretical analysis was performed to demonstrate the
effectiveness of the proposed control strategy. However,
we would like to highlight that, in contrast to our method,
the active control (cf. [35]) and H∞ approach (cf. [33, 33])
anti-synchronization are based on exactly known system
parameters. As a matter of fact, in real physical systems or
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Figure 5: (a)–(b): Changing parameters a1 , b1 , c1 , r1 and
a2 , b2 , c2 , r2 , d2 of the drive system (27) and the response sys-
tem (28) with time t. (c): The error signals e1 , e2 , e3 , e4 of the drive
system (27) and the the response system (28) under the controller
(30) and the parameters update law (31).

experimental situations some system parameters cannot
be exactly known in advance so chaos control and anti-
synchronization with uncertain parameters are universal
and have received significant attention for their potential
applications in prior work. Thus it is muchmore attractive
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Figure 6: Fractional-order hyperchaotic Lorenz system (solid line)
and the controlled fractional-order hyperchaotic Chen system (dot-
ted line) in x − y − z projection.

and challenging to realize the anti–synchronization of
two different fractional order chaotic and/or hyperchaotic
systems with unknown parameters. We strongly believe
that there is high potential in this method and future work
is planned to include cost and noise analysis.
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