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Advances in targeting central sensitization 
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Abstract 

Maladaptation in sensory neural plasticity of nociceptive pathways is associated with various types of chronic pain 
through central sensitization and remodeling of brain connectivity. Within this context, extensive research has been 
conducted to evaluate the mechanisms and efficacy of certain non-pharmacological pain treatment modalities. 
These include neurostimulation, virtual reality, cognitive therapy and rehabilitation. Here, we summarize the involved 
mechanisms and review novel findings in relation to nociceptive desensitization and modulation of plasticity for the 
management of intractable chronic pain and prevention of acute-to-chronic pain transition.
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Introduction
Sensory plasticity encodes environmental experiences 
through functional and structural reorganizational pro-
cesses that shape memory, perceptual sensitivity and 
behavior [1]. However, pathological alterations in sensory 
system’s nociceptive pathways can cause corresponding 
plasticity to become chronically maladaptive, in response 
to particularly intense or repetitive noxious triggers, and 
mediate pain chronification as a form of memory [2]. 
This is especially evident for the somatosensory system in 
specific types of neuropathic pain through potentiation 
of nociception, central sensitization and altered brain 
connectivity [3, 4]. Since plasticity represents an intrinsic 
activity-dependent neuronal ability, this suggests that it is 
essentially reversible or at least modifiable and that sen-
sory experience, learning mechanisms and psychology 
are critical treatment factors affecting pain perception [2, 
5]. Accordingly, a promising therapeutic approach would 
be to interfere with these alterations or induce the rever-
sal process as “physiologically” as possible; that is, accel-
erating recovery by resetting the system to the original 

baseline state via activity or use-dependent mechanisms, 
reflecting sensory experience, such as neurostimula-
tion [6, 7]. Certain non-pharmacological interventions 
including neurostimulation and other modalities show 
significant potentials in the management of maladaptive 
plasticity of chronic pain and the prevention of acute-to-
chronic pain transition. In this review we discuss novel 
research findings on the efficacy of these treatment 
modalities in nociceptive desensitization and associated 
neural plasticity mechanisms.

Nociceptive pathways
Noxious mechanical, thermal and chemical stimuli of 
cutaneous and visceral tissues are detected by afferent 
sensory neurons known as nociceptors, which are gener-
ally classified into fast Aδ and slow C-type fibers. Acute 
tissue injury triggers the local release of various inflam-
matory mediators including adenosine triphosphate 
(ATP), bradykinins, histamine, prostaglandins, neuro-
trophic factors and cytokines [8]. These mediators acti-
vate nociceptors to generate action potential impulses to 
transmit detected inputs to central neurons. In addition, 
activation of C-fibers initiates neurogenic inflammation 
characterized by the upregulated production and release 
of neuropeptides such as neurokinin A, substance P and 
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calcitonin gene-related peptide (CGRP) in a retrograde 
manner [9]. Together, these alterations lead to reversible 
sensitization of peripheral nociceptors with reduction 
in activation threshold and increased stimulus-induced 
and spontaneous discharge [10]. Within the laminae of 
the spinal dorsal horn the primary afferents, except sen-
sory cranial nerves, synapse with second-order afferents, 
which include three groups: proprioceptive, nociceptive 
and wide dynamic range (WDR) neurons. The nocicep-
tive signals are transmitted from primary to secondary 
afferents via the release of different neurotransmitters, 
particularly glutamate and substance P. However, dor-
sal horn nociceptive transmission is also regulated by 
inhibitory mechanisms involving endogenous opioids, 
descending inhibitory pathways and inhibitory interneu-
rons releasing γ-amino butyric acid (GABA) and glycine. 
The secondary afferents form ascending pathways that 
project to the brain stem and medulla and terminate in 
the thalamus and cerebral cortex. Lastly, an extensive 
cortical network commonly referred to as the pain matrix 
processes nociceptive and other salient sensory inputs 
[11].

Nociceptive sensitization
Sensitization of nociception is a temporary adaptive pro-
cess that occurs following inflammatory and noxious 
tissue insults and involves lowered pain threshold and 
amplified responses due to nociceptive neuronal hyperex-
citability [12]. However, maladaptation in this protective 
response can arise from central or peripheral patholo-
gies; for instance neuropathy, and lead to chronic pain 
characterized by allodynia and hyperalgesia [13]. The 
enhanced responsiveness of central nociceptive neurons 
is known as central sensitization, which is hypothesized 
to result in chronic amplification of pain associated with 
ongoing tissue inflammation, following neuronal injury 
or even in the absence of peripheral pathology such as 
in migraine, fibromyalgia and irritable bowel syndrome 
[14]. Central sensitization is mediated by neural plastic-
ity mechanisms that involve increased neuronal activity, 
potentiated synaptic efficacy, enlarged receptive fields 
and reduced inhibition [15]. Therefore, pain “perception” 
would no longer be coupled to the presence, intensity or 
duration of noxious inputs, rendering localized periph-
eral treatments less effective; thus, central sensitization 
is thought to account, at least partly, for unexplained 
chronic pain [16]. Peripheral sensitization processes 
on the level of primary afferents and free nerve endings 
have also been identified and involve plasticity changes 
of nociceptors leading to primary hyperalgesia [17]. The 
maladaptive plasticity processes outlasting tissue heal-
ing are, in certain subgroups of patients, associated with 
various forms of intractable chronic pain; accordingly, 

central sensitization and associated psychocognitive fac-
tors should be taken into account for developing individ-
ualized treatments [18].

Neural plasticity of pain
Plasticity changes occur along pain pathways through-
out the neuroaxis and mediate peripheral nociceptor 
sensitization, central (spinal) sensitization and brain 
remodeling (Fig.  1). Peripherally, inflammatory media-
tors and retrograde neuropeptides “sensitize” nociceptors 
leading to upregulation of substance P, transient recep-
tor potential vanilloid (TRPV) and purinergic receptors; 
in addition to altered membrane ion channels, protein 
kinase activity and growth factor expression resulting 
in hypersensitivity and primary hyperalgesia [17]. The 
main excitatory transmitter of nociceptive neurons is 
glutamate, which acts upon 3-hydroxy-5-methyl-4-isox-
azolepropionic acid (AMPA), N-methyl-d-aspartate 
(NMDA), kainic acid (KA) and metabotropic glutamate 
(mGlu) receptors. Under baseline conditions (resting 
membrane potential), NMDAR channel pore is blocked 
by  Mg2+ ions [19]. During intense, repeated or sustained 
nociceptor activation, as with neuroinflammation and 
nerve injury, the continued release of neuropeptides 
such as substance P and CGRP from primary afferents 
on dorsal horn neurons provides enough postsynaptic 
depolarization to expel  Mg2+ ions and relieve NMDAR 
channel blockade. Subsequently, the binding of gluta-
mate to NMDA receptors generates a strong inflow of 
 Ca2+ ions and mediates long-term potentiation (LTP) of 
dorsal horn excitatory transmission [20]. Other sources 
for intracellular  Ca2+ in dorsal horn neurons include the 
 Ca2+-permeable GluA1 subunit-lacking AMPARs and 
the mobilization of  Ca2+ from intracellular stores, the 
latter of which is mediated by the activation of group-I 
mGluRs. The generated  Ca2+ signals and the activity of 
various peptides including substance P, CGRP and brain-
derived neurotrophic factor (BDNF) activate protein 
kinases such as calcium/calmodulin-dependent pro-
tein kinase II (CAMKII), protein kinase A (PKA) and 
protein kinase C (PKC) [15]. These kinases are found to 
mediate the induction and early-phase of LTP through 
AMPA receptor phosphorylation and synaptic insertion 
following C-fiber tetanization, while the maintenance or 
late-phase of LTP requires de novo protein synthesis [21, 
22]. Other mechanisms of functional plasticity in dor-
sal horn neurons include disinhibition, glial activation 
and nitric oxide (NO)-dependent retrograde signaling, 
which leads to increased neurotransmitter release prob-
ability from C-fiber terminals [15]. In addition, delayed 
structural plasticity changes are observed on the level of 
dendritic spine size and density and involve alterations 
in gene expression and connectivity [23]. Within the 
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brain, similar functional and structural plasticity altera-
tions associated with multiple chronic pain syndromes 
have been documented in various regions including the 
brain stem, thalamus, insular cortex, cingulate cortex 
and primary somatosensory cortex [24]. While it remains 
unclear if brain remodeling is a cause or consequence of 
chronic pain, it was proposed that pain-associated plas-
ticity changes within brain circuits resemble associative 
learning and memory trace formation; thus, rendering 
pain perception more affective than somatic in nature 
[25]. Accordingly, structural spinal and supraspinal 
remodeling are hypothesized to mediate pain chroni-
fication with representational shifting towards emo-
tional than nociceptive circuits [26]. It should be noted; 
however, that not all forms of chronic pain, and not all 
patients with a specific type of pain, show these reor-
ganizations. As previously shown, patients with orofacial 

neuropathic pain exhibit cortical somatosensory remod-
eling; however, patients with chronic non-neuropathic 
orofacial pain do not [27]. Therefore, individualized tar-
geting of central sensitization and brain plasticity may 
provide the means for preventing acute-to-chronic pain 
transitioning and the reversal of pathologic plasticity in 
specific forms of chronic pain. Various modalities have 
been investigated for potential effectiveness in nocicep-
tive desensitization as modulators of neural activity and 
plasticity such as neurostimulation, virtual reality, cogni-
tive therapy and rehabilitation.

Modulating maladaptive plasticity
Neurostimulation
Neurostimulation is a neuromodulatory method based 
on the delivery of electrical impulses to stimulate specific 
neurological sites within the body intended for various 

Fig. 1 Nociceptive pathways and the main loci of maladaptive plasticity. Activation of peripheral nociceptors generates action potentials that 
are transmitted to secondary afferents in the dorsal horn, which then project to the brain for processing. Particularly intense tissue insults result 
in maladaptive plasticity including peripheral sensitization in primary afferents, central sensitization in dorsal horn secondary afferents and brain 
remodeling. AP action potential, AMPAR 3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, DRG dorsal root ganglion, Glu glutamate, mGluR 
metabotropic glutamate receptor, NK1 neurokinin receptor, NMDAR N-methy-d-aspartate receptor, PKA/PKC protein kinase A/C, SP substance-P, 
VGCC  voltage-gated calcium channel
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diagnostic and treatment purposes [28]. Multiple inva-
sive and non-invasive neurostimulation techniques have 
been developed for the management of pain, especially 
chronic forms, which can be used to stimulate peripheral 
nerves, the spinal cord or specific brain regions. Periph-
erally, the techniques include transcutaneous electrical 
nerve stimulation (TENS), peripheral nerve stimulation 
(PNS) and peripheral nerve field stimulation (PNFS) [29]. 
Central neurostimulation techniques include spinal cord 
stimulation (SCS), non-invasive brain stimulation (NIBS) 
and invasive brain stimulation techniques such as deep 
brain stimulation (DBS). NIBS techniques include tran-
scranial magnetic stimulation (TMS) and transcranial 
direct current stimulation (tDCS) [30]. In this review, 
we will focus on SCS and NIBS techniques in relation to 
maladaptive plasticity of central sensitization and brain 
remodeling in chronic pain.

Spinal cord stimulation
The basic principle behind SCS development is the stim-
ulation of ascending non-nociceptive Aβ fibers to block 
or close the gate for C-fiber nociceptive transmission, 
through activating inhibitory interneurons, based on the 
Gate Control Theory of pain [31]. However, the analgesic 
mechanism of SCS is complex and affects various aspects 
of pain through spinal and supraspinal mechanisms, 
which together with the analgesic efficacy can vary across 
different stimulation protocols [32]. These include tonic 
(conventional), high-frequency (paresthesia-free or 
high-dose stimulation), burst and closed-loop SCS wave-
forms [33]. In relation to clinical efficacy, high-frequency 
(10  kHz) and burst SCS are shown to be effective and 
superior to tonic or conventional SCS in chronic back 
and leg pain, failed back surgery syndrome (FBSS) and 
intractable and diabetic neuropathy [34–38]. In addition, 
various clinical studies demonstrate effectiveness of high-
frequency SCS in relieving other forms of pain including 
chronic neck and upper limb pain [39], thoracic back pain 
[40], chronic pelvic pain [41], chronic post-surgical pain 
[42] and chronic widespread pain / fibromyalgia [43]. In 
relation to central maladaptive plasticity, high-frequency 
SCS is clinically found, at 3  months of application, to 
enhance the functional connectivity between the insula, 
frontoparietal and central executive networks in patients 
with FBSS, suggesting potential influence on affective 
saliency and thus emotional awareness of pain [44]. Fur-
thermore, magnetic resonance imaging (MRI) in FBSS 
patients who received high-frequency SCS for 3 months 
revealed significant volumetric alterations of white and 
grey matter in various brain regions, which correlated 
with pain relief [45]. These studies confirm the supraspi-
nal modulatory effects of SCS and further support the 
reversibility of chronic pain-induced alterations of brain 

connectivity. Regarding central sensitization of second-
ary spinal afferents, multiple in vitro studies investigated 
the effects of SCS using rat models. Early findings using 
rodent models showed that tetanization, nerve injury and 
acute noxious stimuli (chemical, mechanical and thermal) 
induce C-fiber synaptic LTP on dorsal horn neurons [46] 
including WDR neurons [47] with subsequent hyperex-
citability of WDR neurons [48]. Appropriately, the appli-
cation of SCS is found to block these effects by inhibiting 
dorsal horn C-fiber LTP on WDR neurons with no effect 
on A-fiber responses [49], decreasing spinal excitatory 
amino acid release via a GABAergic mechanism in neu-
ropathic rats experiencing allodynia [50] and attenuat-
ing the increased WDR neuronal excitability without 
affecting induced or spontaneous discharge in control 
non-allodynic rats [51]. To unravel the underlying mech-
anisms, extensive research has been recently conducted 
providing novel insights into the molecular basis corre-
sponding to SCS excitability normalization and reversal 
of central sensitization. A study by Tilley and colleagues 
(2021) showed, through proteomic analysis, that con-
ventional SCS influenced the expression of over 150 pro-
teins, many of which are involved in stress, nociception 
and neuroglial interactions [52]. Accordingly, the results 
not only show the reversal of pain-associated proteomic 
profiles but further indicate that the mechanism of SCS 
is not solely dependent on the interruption of electri-
cal transmission. Another study by Liao and colleagues 
(2020) revealed that spared nerve injury (SNI) model of 
neuropathic pain results in mechanical hyperalgesia and 
increased expression and phosphorylation of extracel-
lular signal-regulated kinases (ERKs), c-Jun N-termi-
nal kinases (JNKs), and p38 mitogen-activated protein 
kinase (p38-MAPK), which are important regulators of 
neuronal activity and plasticity. Importantly, early appli-
cation of high-frequency SCS was able to prevent these 
alterations in dorsal root ganglia (DRG) and spinal dorsal 
horn, which associated with the attenuation of hyperal-
gesia [53]. Furthermore, Shinoda and colleagues (2020) 
investigated the effects of SCS on SNI, applied at 60 Hz 
for 6 h on the third day of SNI, as well. The findings show 
that SCS suppressed mechanical hypersensitivity, micro-
glial activation and dorsal horn nociceptive hyperexcita-
bility; additionally, SCS reduced somatosensory neuronal 
activity [54]. Interestingly, it is also reported that conven-
tional SCS can activate microglia and thus compromise 
its own analgesic efficacy as preventing microglial activa-
tion prolonged the pain inhibition induced by SCS [55]. 
As microglia are important modulators of neurotrans-
mission, neuroglial interactions and pain signaling with 
hypothesized roles in the pathogenesis of neuropathic 
pain [56], these results highlight the regulation of micro-
glial activity by SCS as a potentially essential analgesic 
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mechanism in neuropathic pain. Lastly, the application 
of high-frequency SCS in rats with SNI-induced neuro-
pathic pain was observed to restore, at least partially, spi-
nal glutamate uptake activity, spinal glutamate levels and 
miniature excitatory postsynaptic current (mEPSC) fre-
quency [57]. Therefore, SCS induces various spinal and 
supraspinal modifications that reverse pain-associated 
maladaptive plasticity in relation to brain connectivity 
and central sensitization.

Non‑invasive brain stimulation
NIBS techniques have significant potentials in the study 
and treatment of various psychiatric and neurologi-
cal disorders including pain [58]. However, it must be 
stressed that the underlying mechanisms are complex 
and the clinical effects depend on various factors lead-
ing to high degree of variability [59]. Therefore, the best 
clinical practice for the use NIBS techniques in pain 
management should be derived from standardized guide-
lines [60, 61]. The two main studied NIBS techniques are 
TMS and tDCS. The principle of TMS is the non-invasive 
application of magnetic field pulses, which carry a cur-
rent through the skull and excite superficial layers of the 
cortex. The two main cortical region to which TMS is 
applied are the primary motor (M1) cortex and the dor-
solateral prefrontal cortex (DLPFC), both of which are 
associated with chronic pain and affect various aspects 
of pain processing [62, 63]. The repetitive application 
of TMS (rTMS) produces long-lasting, stimulation fre-
quency-dependent excitability effects [64, 65] and leads 
to widespread activity changes in connected cortical and 
subcortical regions, yet the alterations of functional con-
nectivity remain network-specific [66, 67]. The rTMS-
induced excitability changes are believed to be mediated 
through neural plasticity mechanisms [68]. Indeed, evi-
dence shows that rTMS-induced changes are NMDAR-
dependent, lead to enhanced BDNF function [69] and 
able to induce potentiation [70] and depression [71] of 
excitability. Furthermore, rTMS application in rodents 
is observed to enhance cognition, facilitate hippocam-
pal plasticity and increase the levels of various plasticity 
markers [72]. Accordingly, accumulating evidence sup-
ports the hypothesis that rTMS accelerates recovery of 
sensory and motor functions after stroke, incomplete 
spinal cord injury and nerve injury by promoting synap-
tic plasticity and thereby reversing maladaptive plastic-
ity [73–75]. In addition, the LTP-like plasticity induced 
by rTMS treatment correlates with cognitive function 
improvement in Alzheimer’s disease patients [76]. Simi-
larly, early treatment with rTMS is proposed to block 
pain-associated maladaptive plasticity induced by sur-
gery, spinal injury and brain trauma; thus, preventing 
acute-to-chronic pain transitioning [77]. In a recent 

meta-analysis, Che and colleagues (2021) found that 
rTMS exerts a short-term analgesic effect that is specific 
to neuropathic pain, a long-term (average of 3  month) 
analgesic effect across multiple chronic pain conditions 
and significant analgesia of provoked pain, which could 
model either acute pain or acute-to-chronic pain transi-
tion [78]. These findings support the general consensus 
that rTMS exerts a multitude of mechanisms that could 
differentially modulate specific types of pain and indi-
cate an acute analgesic effect that could be independent 
from the maladaptive plasticity associated with chronic 
pain. Indeed, rTMS application is shown to activate 
opioid-mediated analgesia of acute pain in healthy indi-
viduals [79], induce dose-dependent immediate anal-
gesia following stimulation in patients with intractable 
neuropathic pain [80] and elevate electrical pain thresh-
olds up to 40  min following application over the soma-
tosensory cortex of healthy subjects without altering the 
excitability of the M1 cortex [81]. Therefore, rTMS car-
ries significant potentials in both: prevention of acute-
to-chronic pain transition, through acute analgesia and 
prevention of maladaptive plasticity, and treatment of 
chronic pain through reversal of maladaptive plasticity. 
On the other hand, the principle of tDCS is the passage 
of current between two electrodes; thus, anodal tDCS 
leads to depolarization while cathodal stimulation causes 
hyperpolarization. In contrast to TMS, which can stimu-
late cortical neuronal axons to fire action potentials, the 
effects of tDCS are more electrically subtle. This is due 
to weaker current pulses affecting membrane excitability 
(subthreshold potential alterations); however, depending 
on the duration and frequency of application it can also 
induce long-lasting effects mediated by intracortical inhi-
bition and facilitation [82]. In relation to neural plasticity, 
the application of tDCS is found in rodent models to pro-
mote BDNF-dependent synaptic plasticity [83], enhance 
synaptic plasticity and memory [84] and improve plas-
ticity deficits and cognitive dysfunction associated with 
diabetes [85]. Clinically, tDCS facilitates the formation of 
long-term motor memory, reflecting experience-depend-
ent plasticity [86], improves motor performance in the 
elderly via enhanced facilitation and reduced inhibition 
[87] and, at short stimulation intervals, leads to LTP-like 
excitability enhancements in healthy participants [88]. 
These findings indicate significant facilitatory effects of 
tDCS on neuronal plasticity, which could thereby accel-
erate the recovery from, or prevent the development of, 
maladaptive plasticity similar to rTMS. Various studies 
support the potential analgesic efficacy of tDCS in mul-
tiple chronic neuropathic pain conditions [89] as well as 
migraine, osteoarthritis and capsaicin-induced mechani-
cal sensitivity [90–92]. Furthermore, tDCS has no impact 
on pain thresholds and mechanical detection in healthy 



Page 6 of 13Bazzari and Bazzari  Egypt J Neurol Psychiatry Neurosurg           (2022) 58:38 

individuals [93]. However, the analgesic response to 
tDCS depends on many factors; hence, it is not effective 
in all patients with neuropathic pain [94]. The mecha-
nisms underlying direct tDCS-induced analgesia are not 
completely understood; however, the effects may not only 
be related to increased or decreased neuronal firing rates 
as reports suggest the engagement of endorphins [95, 
96] and, in addition to modulation of glutamatergic and 
GABAergic balance [97], the alteration of certain neu-
romodulators such as dopamine [98]. In rodent models, 
other neuromodulators are also found to significantly 
affect tDCS responses including serotine [99] and nor-
epinephrine [100]. These neuromodulators are known 
to regulate neuronal activity, synaptic plasticity, input 
processing and associated neurological functions [101]. 
Lastly, many other tDCS effects were proposed to medi-
ate analgesia in relation to altered pain processing and 
modulation of its emotional aspects [102].

Virtual reality
Virtual reality (VR) is a technology that provides an 
immersive experience in a simulated and interactive envi-
ronment via multimodal sensory stimuli including visual, 
auditory and tactile inputs using computer hardware. The 
potential VR applications in the medical field were recog-
nized over two decades ago, such as education, surgery 
and rehabilitation [103]. Since then, extensive research 
has been conducted to evaluate the therapeutic applica-
tion of VR in various conditions. These include recovery 
from stroke [104], improving motor function in cerebral 
palsy [105], managing post-traumatic stress disorder 
[106], alleviating perioperative pain and anxiety [107], 
treatment of phobias [108] and management of acute 
and chronic pain [109] especially phantom-limb pain 
[110]. The effectiveness of VR in pain management, com-
monly termed VR analgesia, can be generally attributed 
to distraction, or the shifting of attention away from pain, 
with potential affective aspects. Early evidence dem-
onstrated that increased pain vigilance and awareness 
in patients with chronic pain is associated with higher 
feelings of distress and disability [111] while distraction 
through cognitively demanding tasks reduces perceived 
pain intensity and neuronal activity in brain structures 
associated with pain processing [112] and produces 
even greater analgesia in high catastrophizing patients 
[113]. Indeed, the actual process of “pain perception” is 
not solely a somatic reflection but rather dependent on 
emotion, cognition and attention as well [114–118]. 
Accordingly, the use of VR demonstrates significant 
analgesic efficacy, during or immediately following the 
“VR experience”, in different types of acute and chronic 
pain [119–122]. However, targeting central sensitization 
and brain remodeling of chronic pain through VR would 

essentially require evidence of long-lasting improvement 
of perceived pain intensity. Indeed, VR produced lasting 
analgesia in patients with fibromyalgia at 6 months follow 
up [123] and chronic headache pediatrics at 3  months 
post-treatment [124]. Furthermore, Mehesz and col-
leagues (2021) showed that an immersive VR experi-
ence in healthy participants is able to produce efficient 
conditioned pain modulation and, in a surrogate central 
sensitization model, alleviate mechanical pain sensitiv-
ity [125]. Additionally, a recent case report by Orakpo 
and colleagues (2021) showed that VR, fused with neu-
rofeedback therapy, achieved adequate analgesia that was 
sustained for 1 year in a patient with chronic spondylolis-
thesis pain, indicating further neuromodulation promise 
of VR in centralized pain syndromes [126]. Moreover, 
immersive VR is shown to not only reduce perception 
of capsaicin-induced ongoing pain, but also to elevate 
pain thresholds of corresponding secondary hyperalgesia 
[127]. These observations provide direct evidence sup-
porting the effectiveness of VR in the management of 
central sensitization and modulation of pain processing. 
It should be noted; however, that effective patient distrac-
tion would entail being comfortable with and willing to 
use VR, which might vary across different demographics, 
available VR hardware and simulated VR environments. 
Accordingly, the production of a “VR pharmacy” to pro-
vide individualized or patient-tailored experiences was 
previously proposed [128]. On the other hand, the use of 
VR in phantom limb pain and pain associated with cer-
tain musculoskeletal disorders relies on additional mech-
anisms other than distraction. Phantom limb pain is a 
form of neuropathic pain that is highly prevalent among 
amputees, which results from representational mis-
matching and subsequent central pain mechanisms [129]. 
Indeed, phantom limb pain is associated with reduced 
thermal pain thresholds in various body parts, indicat-
ing central alterations [130], correlated with mechanical 
wind-up pain and thermal allodynia [131], and the altered 
pain processing and wind-up of phantom limb pain are 
positively correlated with catastrophizing indicating roles 
for cognitive and emotional sensitization [132]. Further-
more, phantom limb pain involves reorganizations or 
regional, amputated limb, boundary re-mapping; how-
ever, maladaptive plasticity of preserved representation 
and activity despite the lack of sensory input results in 
multiple painful and non-painful, illusory, amputated 
limb perceptions [133]. In order to correct, or account 
for, the representational mismatching in phantom limp 
pain; various techniques, mainly based on enhanced vis-
ual input, have been developed including mirror therapy, 
motor imagery, and virtual visual feedback, all of which 
are able to reduce phantom limb pain [134]. Through 
immersive VR systems, embodiment of a virtual limb or 
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body part allows the modulation of perceptual distur-
bances and control of phantom limb pain and other types 
of chronic pain [135]. Accordingly, somatic VR experi-
ences represent a novel form of rehabilitation. Indeed, 
the use of immersive VR in phantom limb pain patients 
is shown in various studies and case reports to elevate 
pain thresholds [136], decrease pain and improve anxiety 
[137] and provide sustained pain reductions [138–140]. 
These findings support a significant promise for VR in 
the modulation of central processing in chronic pain and 
management of phantom limb pain; however, larger stud-
iers are still required.

Cognitive therapy
As discussed previously, cognition and emotion are 
important factors influencing the process of pain percep-
tion. In addition, catastrophizing and maladjusted pain 
cognitions are associated with higher pain scores, anxi-
ety, central sensitization and maladaptive processing of 
pain [141–144]. This is also observed in neuropathic pain 
conditions; for instance, catastrophizing is commonly 
observed in patients with orofacial neuropathic pain, for 
which only select pharmacological options are available, 
and is associated with higher pain intensity [145–147]. 
Accordingly, various studies investigated the potentials of 
cognitive-based therapies in the management of chronic 
pain conditions. These mainly include cognitive behavio-
ral therapy (CBT), mindfulness-based therapies (MBT) 
and acceptance and commitment therapy (ACT). Cur-
rent evidence indicates that these thee approaches lead 
to incremental but statistically significant reductions in 
chronic pain scores [148–151]. Despite these improve-
ments, the aim of cognitive therapy should be to affect 
pain processing and modulate central mechanisms of 
sensitization to improve responses to pharmacological 
therapy. Indeed, CBT is found to decrease induced-pain 
unpleasantness but not intensity; however, it significantly 
reduced secondary hyperalgesia; thus, central sensiti-
zation [152]. Accordingly, extensive research has been 
recently conducted to evaluate the neural mechanisms 
of cognitive therapies. It was shown that catastrophiz-
ing is associated with higher functional connectivity 
between the insula and primary somatosensory (S1) cor-
tex in fibromyalgia patients. However, CBT intervention 
led to significant and long-term improvements in pain 
intensity and catastrophizing, which were associated 
with restorations of lower resting-state functional con-
nectivity levels between the insula and S1 cortex [153]. 
In addition, chronic pain is associated with reduced 
grey matter volume of the prefrontal cortex [154] while 
CBT intervention causes increased grey matter volume 
in various cortical regions, and the volume increase in 
the prefrontal and somatosensory cortices is associated 

with reduced catastrophizing [155]. These findings are 
functionally reflected as well in fibromyalgia patients 
undergoing CBT therapy in whom CBT led to significant 
elevation in pain-evoked neuronal activity in the prefron-
tal cortex with suggested alterations in pain processing 
loops relating to pain reappraisal [156]. Further neuro-
imaging evidence shows that 11 weeks of CBT in chronic 
pain patients caused significant elevations in connectiv-
ity between the somatosensory cortex and basal gan-
glia while causing reductions in connectivity of default 
mode network with limbic regions such as the amygdala, 
which were accompanied with clinical improvements and 
improved pain-coping [157]. The connectivity alterations 
of CBT in chronic pain patients also involve resting-
state brain networks, especially the orbitofrontal cortex, 
which has important roles in the cognitive processing of 
pain [158]. On the other hand, MBCT is another form of 
psychotherapy that relates to CBT but focuses on mind-
fulness through certain interventions such as medita-
tion and other practices. It was found that cognitive 
therapies including CBT and MBCT, in patients with 
various chronic pain conditions, alter neuronal function 
throughout brain networks and reduce affective aspects 
of the pain experience [159]. In addition, mindfulness 
meditation in chronic pain, when compared to sham 
controls and placebo analgesia, is found to cause signifi-
cantly higher reductions in pain intensity and unpleas-
antness and cause different brain activity alterations. 
These include enhanced activity of cognition-dependent 
pain-modulating cortical regions including the anterior 
insular, orbitofrontal and subgenual anterior cingulate 
cortices [160]. Therefore, MBCT-induced modulation of 
pain is different from and relies on different mechanisms 
compared to placebo analgesia. Positive findings are also 
observed with ACT interventions in relation to pain, 
behavior and connectivity alterations across emotion, 
cognition and pain processing networks [161, 162]. These 
novel findings provide key insights into the neural plas-
ticity mechanisms by which cognitive therapies modulate 
central pain processing. Lastly, some reports indicate that 
perioperative CBT can decrease postsurgical pain and 
catastrophizing [163, 164], which in principle, and based 
on preliminary findings [165], aid in the prevention of 
post-surgical acute-to-chronic pain transition; however, 
further investigations are needed.

Exercise rehabilitation
Rehabilitation encompasses a multitude of interven-
tions; however, in relation to pain management it mainly 
includes physical or exercise therapy, dietary control, 
stress management and other lifestyle modifications. 
Within the scope of this review, the focus on rehabilita-
tion will be directed towards physical or exercise therapy 
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in chronic pain. It is well established that exercise, within 
appropriate limits, has beneficial impact on pain and 
associated symptoms [166]. In addition, exercise-induced 
analgesia is a known phenomenon; however, the under-
lying mechanisms are complex and multiple hypotheses 
have been proposed [167]. On the other hand, various 
reports suggest that patients with chronic pain may not 
benefit from post-exercise analgesia as healthy individu-
als [168]. The pattern and not necessarily type of exercise; 
however, is a major outcome determinant such that sud-
den bouts of heavy exercise result in pain exacerbation, 
while regular moderate physical activity improves pain, 
decreases central neuronal excitability and promotes cen-
tral inhibition [169]. In relation to central sensitization, 
various studies investigated the effects of exercise on pain 
sensitivity in patients with chronic pain and accumulat-
ing evidence demonstrates beneficial effects for exercise-
induced hypoalgesia. In osteoarthritis, education and 
exercise lead to pain reduction and lower analgesic use 
post-exercise, while additional strength exercise reduces 
hyperalgesia but attenuates pain reductions [170, 171]. 
In chronic back pain, aerobic exercise results in signifi-
cant reductions of chronic pain intensity, induced-pain 
sensitivity and interference, potentially due to activa-
tion of endogenous opioid analgesia [172]. Other specific 
types of exercise are also effective for chronic low-back 
pain; for instance, McKenzie exercise program was found 
more effective than conventional physiotherapy and led 
to significant reduction of central sensitization mark-
ers, pain intensity and disability; however, trunk muscu-
lar endurance did not improve [173]. However, effective 
exercise-induced recruitment of endogenous analgesia is 
not observed in all chronic pain conditions; for instance, 
exercise is effective in rheumatoid arthritis but not in 
chronic fatigue syndrome and fibromyalgia [174]. There-
fore, a moderate physical activity, unless contraindicated, 
can be generally recommended; however, specific reha-
bilitation and exercise programs should be selected in an 
individualized manner.

Discussion and clinical considerations
Accumulating evidence indicates a significant role 
for maladaptive plasticity in the pathophysiology of 
various forms of chronic pain through functional and 
structural connectivity alterations. In this regard, non-
pharmacological interventions including the discussed 
neuromodulation techniques, cognitive therapies and 
rehabilitation carry significant potentials to counteract 
maladaptive plasticity to help alleviate chronic pain or 
prevent acute-to-chronic pain transition. However, the 
functional and structural plasticity alterations associated 
with chronic pain show significant discrepancies across 
a wide array of chronic pain conditions. In addition, the 

molecular mechanisms by which different neuromodu-
lation techniques impact neuronal plasticity vary widely 
as well; thus, each intervention would have differential 
efficacy across different pain conditions. Furthermore, 
inter-individual variability as well as associated psychoc-
ognitive factors must be taken into account as not all 
patients develop central sensitization, exhibit connectiv-
ity alterations or equally respond, or develop tolerance, 
to the various therapeutic interventions. Therefore, the 
importance of individualized treatment and patient-
tailored selection of appropriate treatment options must 
be stressed. Clinical tools such as the central sensitiza-
tion inventory [175] have been developed, which can help 
identify patients with central components of sensitiza-
tion and corresponding severity [176], and shown to be 
valid even in the outpatient setting [177]. The choice of 
treatment intervention should be based on guideline rec-
ommendations derived from clinical evidence support-
ing the application of each treatment modality. The use 
of brain stimulation techniques such as rTMS and tDCS 
largely remains investigational with weak or inconclusive 
recommendations in neuropathic pain, fibromyalgia and 
spinal cord injury pain [60, 61]. This is due to inconsist-
ent clinical evidence mainly attributable to randomized 
controlled trials (RCTs) with low study sample sizes 
[178]. On the other hand, an expert consensus panel in 
2020 recommended the use of rTMS, applied to the M1 
cortex, for neuropathic pain, post-traumatic brain injury-
related headache, postoperative pain and prevention of 
migraine [179]. Other neurostimulation techniques have 
been more widely applied in the clinical setting such as 
high-frequency SCS, which is approved by the U.S. Food 
and Drug Administration as aid for the management of 
chronic back and limb pain as well as diabetic neuropathy 
[180]. Multiple clinical trials on the use of high-frequency 
SCS have been done with robust evidence to support its 
use for persistent back and radicular pain especially fol-
lowing failed back surgery [181], as also recommended by 
the National Institute for Health and Care Excellence for 
chronic neuropathic pain [182]. In relation to psychologi-
cal therapy, particularly CBT, and exercise therapy, alone 
or as part of multi-disciplinary rehabilitation programs, 
clinical evidence supports slight improvements of func-
tion and pain scores over short (< 6  months), interme-
diate and long-term (> 12  months) follow-up in various 
chronic pain conditions including fibromyalgia [183]. 
Despite that rehabilitation and cognitive therapies pro-
vide modest improvements of pain scores, their psycho-
logical impact on pain cognition and brain connectivity 
could prove to be essential for patients with centralized 
pain syndromes. Therefore, CBT and exercise should be 
considered for all adult patients with primary chronic 
pain as recommended by the National Institute for 
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Health and Care Excellence [184]. Lastly, the use of VR is 
yet to be approved for pain management as more robust 
clinical evidence is required.

Conclusions
Over the last two decades, the impact of maladaptive 
plasticity of central sensitization and brain remodeling 
has been highlighted and identified as a major compo-
nent of various chronic pain conditions. Accordingly, 
neuromodulation research targeting maladaptive plas-
ticity has been gaining momentum and shown tremen-
dous usefulness in managing various forms of chronic 
pain that would otherwise be considered intractable and 
unresponsive. While pharmacological agents are still 
considered the cornerstone in the treatment of acute and 
chronic pain, novel neuromodulation techniques and 
protocols are continuously advancing with significant 
future potentials. Further large clinical trials are required 
to establish the long-term clinical safety and efficacy of 
these techniques, the results of which could reshape 
the scope of pain management in various chronic pain 
conditions.
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