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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the most
common cause of dementia in the elderly. The complexity of AD has hindered the development of
either a cure or a disease-modifying therapy to halt the disease progression. Numerous hypotheses
were presented in order to explain the mechanisms underlying the pathogenesis of AD. Introduced
in 1992, the “Amyloid Cascade Hypothesis” had a huge impact on the field and inspired the rise of
various drug candidates, especially amyloid-beta (Aβ)-directed drugs; including beta-site amyloid
precursor protein cleaving enzyme 1 (BACE1) inhibitors. Adopted by a number of pharmaceutical
companies, the development of BACE1 inhibitors has gained momentum in the past decade with
promising results from experimental and early clinical-phase studies. Nevertheless, nearly all BACE1
inhibitors failed in later phases of clinical trials, due to safety and/or efficacy issues, and others were
discontinued early in favor of second-generation small-molecule candidates. This paper aims to
provide a comprehensive review of all BACE1 inhibitors to ever reach clinical trials, and we discuss
the challenges and different perspectives on whether BACE1 inhibitors are to be reconsidered or
revitalized in the future.
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1. Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder and considered
the major cause of dementia in the elderly [1]. According to the 2022 world Alzheimer’s
report, there are currently over 55 million individuals diagnosed with AD worldwide with
an estimate that the number may exceed 130 million by the year 2050 [2]. The report has
also highlighted the importance of early detection and diagnosis of AD, with estimates that
as much as 75% of individuals with dementia are not diagnosed globally [2].

For well over a century since the first diagnosed case with AD [3], substantial efforts
for understanding the disease pathophysiology, contributing risk factors, progression and
treatment have been undertaken with a boost in scientific research aided by the introduction
of biochemical analysis in the 70s and 80s of the past century [4]. Early discoveries have
successfully introduced the cholinergic hypothesis for AD, where reduced cholinergic
activity in the brain was suggested to be the major cause of AD, and formed the scientific
base for the currently approved drugs for AD [5]. However, and despite all efforts over
the past decades, AD still lacks either a cure or a disease modifying therapy to slow
down the disease progression, and the currently available pharmacological options are
limited to acetylcholinesterase (AchE) inhibitors and the N-methyl-D-aspartate (NMDA)
receptor blocker memantine that may only provide modest symptomatic management
in AD patients with no capability to alter the disease progression [6]. Furthermore, the
wide array of risk factors found to be associated with AD adds on to the complexity of
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the disease, ranging from constitutional risk factors (e.g., cardiovascular diseases and
genetic predisposition) to newly identified ones (e.g., vitamin D deficiency and thyroid
imbalance), necessitating further investigations to elucidate the mechanisms linking them
to the pathogenesis of AD [7–9].

Later into the process, the focus has shifted towards examining the histopatholog-
ical hallmarks of the disease, namely the extracellular amyloid-beta (Aβ) plaques and
intracellular neurofibrillary tangles [10]. These investigations have begun a new era in
the discovery and development of newer medications to treat or, at least, halt the disease
progression, which followed the steps of the “Amyloid Cascade Hypothesis” published
back in 1992 [11]. The hypothesis had a huge impact on AD research and numerous agents
were developed and advanced into human clinical trials, targeting the molecular basis
of the hypothesis. Among these are inhibitor of the beta-site amyloid precursor protein
cleaving enzyme 1 (BACE1), also referred to as beta-secretase 1, which is considered a vital
contributor in the formation of Aβ plaques [12].

This paper provides an overview of the molecular basis of the “Amyloid Cascade
Hypothesis” with a focus on the central role of Aβ, BACE1 and associated signaling
pathways, and a comprehensive examination of BACE1 inhibitors by tracking their timeline
from early rise in experimental studies to later fall in clinical trials. Lastly, we discuss future
perspectives regarding the fate of the hypothesis and BACE1 inhibitors.

2. The “Amyloid Cascade Hypothesis” and Beyond

The original hypothesis provided some insights into the mechanistic role of BACE1
in the pathogenesis of AD [11]. The amyloid precursor protein (APP) is an integral trans-
membrane protein suggested to mediate a number of biological functions, such as the
development of the nervous system, formation of neuromuscular junctions, synaptic plas-
ticity, axonal growth and others [13]. Under physiological conditions, APP undergoes
proteolytic cleavage initially via the alpha (α)-secretase enzyme, that cuts APP within the
Aβ domain, followed by gamma (γ)-secretase, eventually resulting in the release of soluble
APP-α molecules, which are found to play some beneficial effects, including coordination
of cellular responses and other proliferative effects [14]. This cleavage sequence has been
classically referred to as the “Non-Amyloidogenic Pathway” (Figure 1).
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On the other hand, the sequential activity of BACE1 and γ-secretase on APP results in
the formation of Aβ isoforms; namely the insoluble Aβ42. This isoform is found in higher
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concentrations in AD patients and is more prone to aggregation and deposition in the brain
resulting in the development of Aβ plaques (i.e., a major hallmark of AD) [15]. Accordingly,
this proteolytic sequence has been referred to as the “Amyloidogenic Pathway” and has
led to the suggestion that abnormal BACE1 activity is responsible for the pathogenesis of
AD and highlighted the potential of BACE1 as a promising target for drug development to
counteract AD progression [16].

Indeed, abnormal BACE1 activity is a key factor in AD pathogenesis, and this can
be clearly observed in patients with trisomy 21 (i.e., Down Syndrome), where a marked
increase in BACE1 is found to be the key contributor in the development of early-onset
familial AD in this group [17]; thus, further supporting the potential of BACE1 as a target for
AD. Nevertheless, familial AD represents only a minority of all AD cases (< 5%) [18], while
the vast majority (i.e., sporadic AD) still lack a clear picture regarding the exact molecular
pathways underlying the disease. This is in addition to a long list of non-genetic risk factors
associated with AD, thus adding further to its complexity. However, subsequent research
has provided more insights into the molecular mechanisms meditating AD pathogenesis,
highlighting the cross-talk between the formation of AD hallmarks and multiple other
pathways; including but not limited to, neuro-inflammation [19], insulin signaling [20]
oxidative stress [21] autophagy [22] tauopathies [23] and disrupted neuromodulatory
control [24] among other pathways found to influence Aβ production.

For instance, nuclear factor kappa b (NF-κB) activation was found to increase BACE1
expression and, in turn, Aβ production [25]. Moreover, triggers of canonical and/or
alternative NF-κB signaling pathways, such as pro-inflammatory cytokines [26], pattern-
recognition receptors (PRRs) [27], T- and B-lymphocytes [28] as well as tumor necrosis
factor (TNF) receptor superfamily [29], were also found to correlate with the progression of
AD; thus, highlighting the central regulatory role of NF-κB in relation to BACE1 expression.
Interestingly, Aβ itself was also found to promote the activation of p65/p50 dimers of NF-κB
and trigger the expression of pro-apoptotic genes [30]. Another example can be observed in
insulin signaling, were Aβ impaired insulin-mediated responses via altering cellular levels
and interactions of insulin receptors and low-density lipoprotein receptor-related protein-1
(LRP-1) in 3XTg-AD mice [31]. In addition, Aβ was observed to promote insulin resistance
through promoting the serine phosphorylation of insulin receptor substrate-1 (IRS-1) [32],
resulting in the reduction of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt)
expression and enhanced glycogen synthase kinase-3 beta (GSK3β) activity [33]. Enhanced
GSK3β activity was linked to the hyperphosphorylation of intracellular tau proteins leading
to the development of neurofibrillary tangles [34]; accordingly, impaired insulin signaling
was suggested to be a link between extra- and intracellular events in AD. GSK3β was also
found to promote the activation of NF-κB and, in turn, sequential BACE1 expression and
Aβ production [35]. Numerous other pathways have also been found to follow the same
pattern, creating what appears to be a vicious cycle of endless events promoting the disease
progression (Figure 2).

Such findings can illustrate the complex relationship between various signaling path-
ways and the progression of AD, which have led the scientific field to rethink whether Aβ

is a major cause of AD or a consequence of multiple defective signaling pathways [36],
especially that AD hallmarks appear at a late stage of the disease. All in all, this has
promoted the emergence of numerous other hypotheses following the “Amyloid Cascade
Hypothesis”, such the tau hypothesis [37], GSK3β hypothesis [38], oxidative stress hy-
pothesis [39] amyloid-inflammatory hypothesis [40] and, ultimately, the multifactorial
hypothesis of AD [41], which calls for taking into consideration the multifactorial nature of
AD and the potential benefit of developing multi-target agents or combinational drug use.
Needless to say, for years BACE1 seemed to be a tempting target for drug development
and, indeed, numerous agents targeting BACE1 have emerged in experimental studies and
others progressed into clinical trials. Findings regarding BACE1 inhibitors are discussed in
the sections below.
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3. BACE1 Inhibitors in Clinical Trials: What Happened?

Inspired by the “Amyloid Cascade Hypothesis” a number of pharmaceutical compa-
nies have dedicated time and efforts to develop pipelines and accelerate the introduction of
small-molecule BACE1 inhibitors as potential disease modifying therapies for AD. Unfor-
tunately, results of early clinical trials did not go in favor of BACE1 inhibitors, resulting in
their discontinuation from production pipelines [4]. Below will include a discussion of the
rise and fall of BACE1 inhibitors in clinical trials in order to dissect the factors that have led
to the current status.

3.1. LY2811376

LY2811376 was the first small-molecule BACE1 inhibitor developed by Eli Lilly to
enter clinical trials. In a translational phase I clinical trial (NCT00838084), completed in
2009, conducted to investigate the safety, pharmacodynamic and pharmacokinetic profiles
of orally administered LY2811376, the drug demonstrated a significant decline of Aβ levels
in the plasma and cerebrospinal fluid (CSF) in recruited subjects [42]. Unfortunately, further
investigations were put on hold due to additional toxicological data reporting damage to
eyes’ pigment epithelium in rats [43], and the drug was later discontinued by the company
in favor of more potent and safer second generation BACE1 inhibitors. Despite the fact
that LY2811376 was discontinued, it provided the first clinical evidence that BACE1 is a
plausible target for AD. Currently, the drug use is restricted only to experimental studies as
a selective BACE1 inhibitor [44,45].

3.2. LY2886721

LY2886721 is a second-generation BACE1 inhibitor developed by Eli Lilly, after its pre-
decessor LY2811376, and the first BACE1 inhibitor to reach phase II clinical trials [43]. A total
of six phase I clinical trials were conducted (NCT01534273, NCT01227252, NCT01133405,
NCT01807026, NCT01775904 and NCT01367262), aiming to assess the safety, tolerabil-
ity, pharmaco-kinetic and -dynamic profile as well as different formulations and dosing
regimens of LY2886721 in healthy volunteers (only NCT01807026 included both healthy
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subjects and patients diagnosed with AD) [46]. Results of phase I trials have shown that
LY2886721 is generally safe and well tolerated at different dosing regimens with dose-
dependent central nervous system (CNS) disposition and the ability to target BACE1 and
reduce multiple Aβ isoforms [47], and overall supported the introduction of LY2886721 into
phase II. In 2012, a phase II trial (NCT01561430) was initiated to investigate the tolerability,
efficacy, and pharmacodynamics of two different LY2886721 doses (15 mg and 35 mg) and
included a total 128 AD patients with mild cognitive impairment or tested positive for Aβ

deposition [48]. However, the trial was terminated as a number of participants exhibited
abnormal biochemical liver test results that were independent (i.e., off-target) from BACE1
inhibition [49]. Therefore, Eli Lilly decided to halt further human studies with LY2886721,
with a current discontinued status by the U.S. FDA for AD and patients with mild cogni-
tive impairment. Later, May et al. (2015) elaborated more on the results of the phase II
trial, where 4 out the 70 recruited subjects were reported to have abnormal liver enzyme
elevations leading to the termination of the trial [50]. However, the relationship between
LY2886721 and the abnormal liver enzyme elevations is still unclear, and the long-term
clinical safety of BACE1 inhibitors should be further examined. Additionally, overcoming
the relative non-selectivity of BACE1 vs. BACE2 inhibition is another factor that may
promote the development of safer and more-effective drugs for AD [50]. Ultimately, safety
concerns have doomed the use of LY2886721 in humans, yet it is still being utilized in
experimental studies to provide clues for the potential effects of BACE1 inhibitors. For
instance, in a recent study examining the effects of LY2886721 in PLB-4 mice, the drug
has shown improved glucose homeostasis, hepatic gluconeogenesis, insulin sensitivity
and beneficial effects on APP processing, supporting the potential utilization of BACE1
inhibitors for the treatment of type 2 diabetes mellitus-associated pathologies, especially in
cases when diabetes is comorbid to AD [51].

3.3. RG7129 (RO5508887)

RG7129 is an orally administered BACE1 inhibitor manufactured by Roche [52]. In late
2011 and 2012, Roche launched three phase 1 clinical trials (NCT01461967, NCT01592331
and NCT01664143) to assess the safety, pharmacokinetics and pharmacodynamics of
RG7129 in healthy participants [53]. However, in late 2013, Roche decided to discon-
tinue the development of RG7129 with no official statement issued or results posted so far;
however, liver toxicity was mentioned as a reason for the drug termination [54].

3.4. BI 1181181

BI 1181181 is a small-molecule BACE1 inhibitor that was initially discovered by Vitae
Pharmaceuticals and clinically developed by Boehringer Ingelheim [55]. Preclinically, the
drug showed impressive results in lowering Aβ levels in rats and guinea pigs [56,57].
In 2014, three phase I clinical trials were initiated to investigate the safety, tolerability
and pharmacokinetic and pharmacodynamic properties of BI 1181181 in healthy partici-
pants [58]. Two of the three phase I trials (NCT02044406 & NCT02106247) were actually
completed, and the results revealed that single doses of BI 1181181 were well tolerated
with a substantial and sustained CSF Aβ reduction, and the pharmacokinetics were dose-
proportional, not affected by food, and compatible with once-daily dosing [59,60]. The
third phase I trial (NCT02254161) to primarily investigate the safety and tolerability of
orally administered repeated rising doses of BI 1181181 (given once daily over 10 days)
was terminated after reports of skin reactions among some of the participants [55]. In 2015,
another phase I trial (NCT02345304), aiming to explore the effects of different doses of
BI 1181181 on single-dose kinetics of midazolam, warfarin, omeprazole and digoxin, was
withdrawn prior to recruitment. Eventually, the drug development was put to an end in
favor a second-generation compound [55]. Currently, there is no mention of BI 1181181 in
any further experimental or clinical studies.
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3.5. JNJ-54861911 (Atabecestat)

JNJ-54861911 is a BACE1 inhibitor developed by Janssen. Over the past decade, the
drug had a long history in clinical trials with promising findings and was able to progress
and reach a phase II/III study [61]. Starting in 2013, Janssen initiated a series of phase I trials;
2013 (NCT01978548, NCT01827982 and NCT01887535), 2014 (NCT02152332, NCT02197884,
NCT02211079, NCT02180269 and NCT02260700) and 2015 (NCT02611518, NCT02355561
and NCT02360657) [62]. Phase I trials were predominantly aimed at investigating the
safety, tolerability, pharmacokinetics, pharmacodynamics, possible serious adverse events
(i.e., effects on QT/QTc intervals), possible drug interactions (i.e., metformin and rosu-
vastatin) and food interaction (i.e., effect of a high-fat/high-caloric breakfast), of a single
or multiple dosing regimens in healthy subjects [62]. Two of the aforementioned phase I
trials (NCT01978548 and NCT02360657), aimed to investigate the safety, tolerability and
pharmaco-kinetics, and -dynamics in patients with prodromal AD as well as CSF Aβ levels
in asymptomatic subjects at risk for AD, respectively. Results of phase I clinical trials have
shown that JNJ-54861911 was generally well tolerated and able to potently penetrate into
the CNS and achieve high and stable reduction in Aβ levels. In addition, the trials reported,
for the first time, a correlation between CSF BACE1 and its downstream marker Aβ42;
however, the importance of routinely measuring BACE1 in daily clinical practice and AD
clinical trials remains to be elucidated [63–65].

In parallel, Janssen started two phase II trials; 2014 (NCT02260674) and 2015 (NCT02406027),
to assess the long-term safety and tolerability of different JNJ-54861911 doses in patients
with early AD; in addition to, a 2015 phase II/III trial (NCT02569398) to evaluate the actual
efficacy of JNJ-54861911 in slowing down the cognitive decline in Aβ-positive asymp-
tomatic subjects with high AD risk [62]. Nevertheless, both of the 2015 studies were
eventually terminated, and in 2018 Janssen announced the discontinuation of the drug
due to reports of liver toxicity in test subjects [66]. The preliminary and full results of the
trials were later published and revealed that JNJ-54861911 treatment did not show any
benefit over placebo, caused an elevation of liver enzymes and showed a trend towards
declines in cognition with evidence of reversibility after 6 months off treatment [67–69].
As a last attempt, a 2018 trial (NCT03587376) was conducted to explore T-cell mediated
inflammatory immune response in subjects who were previously administered the drug,
as a suggested pathway mediating JNJ-54861911 or its metabolites-induced liver toxicity;
however, the trial was also terminated. A liver biopsy from one of the volunteers who
experienced an elevation in liver enzymes showed signs of inflammation with an increase
in T and B-cell infiltrates as well as hepatocyte death [70]. Later results revealed the detec-
tion of JNJ-54861911 metabolite-responsive T-cell clones in patients who experienced liver
toxicity, which indicates the presence of an immune-based mechanism for the observed
liver enzyme elevations [71]. In 2022, JNJ-54861911 holds a discontinued status for AD and
without further use in clinical or experimental studies.

3.6. LY3314814 (AZD3293, Lanabecestat)

LY3314814 is a BACE1 and BACE2 inhibitor developed by a joint collaboration be-
tween AstraZeneca and Eli Lilly [72]. Preclinical data from various animal models showed
promising outcomes and supported the progress of LY3314814 into clinical trials [73,74].
Between 2012 and 2017, numerous phase I trials were conducted to assess the safety, tolera-
bility, drug interactions and pharmaco-kinetic and dynamic profiles of various LY3314814
doses and dosing regimens [75,76]. Results from phase I trials found that LY3314814 was
generally safe and well-tolerated with a robust reduction in plasma and CSF Aβ levels
among different drug formulations [77–79]. Directly from phase I to phase III, completely
skipping phase II, a 2014 phase II/III trial (NCT02245737), referred to as “AMARANTH”
trial, was conducted to investigate the safety and efficacy of LY3314814 for a period of 104
weeks in the treatment of early AD. In 2016, the “AMARANTH” trial was followed by
another two phase III studies (NCT02972658 and NCT02783573), with a total of just over
4300 participants enrolled in the three trials. However, after an independent assessment
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conducted in 2018, all of the three phase III trials were terminated as the trials were not
likely to meet the primary endpoints upon by completion and, in turn, trials were put to an
end for futility [80–82]. The phase III trials results were later published and confirmed the
findings of the independent assessment, as LY3314814 treatment did not slow down the
cognitive/functional decline or alter the disease progression and was actually associated
with cognitive worsening as well as brain volume reduction [83–85]. Currently, LY3314814
holds a discontinued status for AD.

3.7. MK-8931 (MK-8931-009, Verubecestat)

MK-8931 is a small-molecule BACE1 and BACE2 inhibitor developed by Merck [86].
Three phase I clinical trials (NCT01496170, NCT01537757 and NCT02910739) were con-
ducted to assess the safety, tolerability and pharmaco-kinetics and dynamics of MK-8931.
Results of phase I studies illustrated a potential for MK-8931 in the treatment of AD, as
MK-8931 was found to be generally well tolerated and was able to reduce mean CSF
concentrations of the Aβ proteins: Aβ40, Aβ42, and soluble β fragment of APP [87,88]. In
2012, Merck started the “EPOCH” trial (NCT01739348), initially as a phase II that was
expanded to phase III, enrolling over 2000 participants to investigate the efficacy and safety
of MK-8931 over an intended period of 78 weeks in mild to moderate AD [89]. Followed
by another phase III study, the “APECS” trial (NCT01953601), enrolling 1454 subjects to
examine the safety and efficacy of MK-8931 in prodromal AD [90]. However, both trials;
“EPOCH” and “APECS” were terminated. The published results revealed no benefit of
MK-8931 in mitigating cognitive/functional decline in patients with mild-to-moderate
AD and it even associated with cognitive worsening, brain volume loss, and multiple
treatment-related adverse events, including falls and injuries, suicidal ideation, weight loss,
sleep disturbance, skin rash and hair color change; however, MK-8931 was not associated
with adverse effects on retinal thickness and verbal fluency tasks showed some improve-
ment [84,91–95]. In 2022, MK-8931 holds a discontinued status for AD and was unlisted
from Merck’s pipeline.

3.8. E2609 (Elenbecestat)

E2609 is a small-molecule BACE inhibitor, with more selectivity (3.53-fold) towards
BACE1 compared to BACE2, and clinically developed by both Biogen and Eisai Co. Ltd. [96].
Preclinical data showed that E2609 was able to significantly lower Aβ levels and was
not associated with hypopigmentation as seen in other BACE inhibitors, such as MK-
8931, which is attributed to its selectivity towards BACE1 than BACE2 [97]. Between
2011 and 2017, ten phase I clinical trials (NCT01975636, NCT02859207, NCT03055962,
NCT01511783, NCT02207790, NCT01600859, NCT01716897, NCT01294540, NCT02222324
and NCT02055703) were conducted to assess the safety, tolerability, pharmaco-kinetics and
-dynamics and drug- and food-interactions of different doses and regimens of E2609. Re-
sults of some of phase I trials were published, which highlighted that E2609 was generally
well tolerated and did not display treatment-emergent adverse events or any clinically
important effects on vital signs or electrocardiogram (ECG) and did not require restrictions
or dose adjustments when co-administered with CYP3A inhibitors [98–100]. In December
2014, a phase II trial (NCT02322021) was launched to evaluate its safety and efficacy in
participants with mild cognitive impairment with AD, prodromal AD or mild to moderate
dementia due to AD [101]. Early results of the phase II trial revealed that E2609 was
generally well tolerated, had no unexpected safety concerns emerged, was not discon-
tinued by any subject due to liver toxicity and caused a statistically significant reduction
in Aβ burden [102]. In parallel with the phase II trial, two multi-center phase III studies
(NCT02956486 and NCT03036280), referred to as “MissionAD1” and “MissionAD2” respec-
tively, were initiated in 2016 to evaluate the efficacy and safety of E2609 in patients with
early AD [103,104]. However, in 2019 both phase III trials as well as the ongoing phase
II trial were all terminated, because of an unfavorable risk-benefit ratio, no evidence of
potential efficacy and worse adverse event profile of E2609 than placebo [101,103]. Some of
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the phase III results were later presented in the 2021 Alzheimer’s Association International
Conference, highlighting that there was no evidence of treatment effectiveness in the early-
terminated “MissionAD” program even in the very mild subjects [105]. In 2022, E2609 is
discontinued for AD.

3.9. CNP-520 (Umibecestat)

CNP-520 is a BACE1 inhibitor, administered in capsule formulation, and jointly devel-
oped by Novartis and Amgen [106]. Early data showed that CNP520 was able to decrease
brain and CSF Aβ levels and deposition in rats, dogs and APP-transgenic mice and demon-
strated sufficient safety with no signs of depigmentation, retina, liver or cardiovascular
toxicity [107]. In a multi-center phase II (NCT02576639) dose-ranging safety and tolerability
study in 2015 in subjects above 60 years old, CNP520 was found to be generally safe and
well tolerated and resulted in a robust dose-dependent CSF Aβ reduction [107]. Later on,
two registered phase II/III trials (2015; NCT02565511 and 2017; NCT03131453), referred
to as “Generation 1” and “Generation 2” respectively, were terminated in 2019 after early
reports of safety issues with CNP-520; including, decline in cognition, brain atrophy and
weight loss [108,109]. Nonetheless, these adverse events were found to be reversible with
the follow-up monitoring after the discontinuation of the drug treatment [110]. Currently,
CNP-520 is discontinued for AD.

3.10. LY3202626

LY3202626 is another BACE1 inhibitor by Eli Lilly [111]. Results from preclinical
studies demonstrated the ability of LY3202626 to produce a concentration-dependent
reduction of Aβ expression in PDAPP mice primary neuronal cultures; in addition, it
reduced hippocampal and cortical Aβ and sAPPβ levels in PDAPP mice and beagle
dogs following oral treatment [112,113]. Between 2014 and 2017, three phase I trials
(NCT02323334, NCT02555449 and NCT03023826) were conducted in healthy subjects [114].
The results of these phase I trials revealed that LY3202626 was generally well tolerated
among all tested doses, reached maximum plasma concentration 3 h post admiration, was
able to freely penetrate BBB, produced dose-dependent decline in both plasma and CSF
Aβ40 and Aβ42 and its metabolism occurred primarily via O-demethylation and amide
hydrolysis [115,116]. In June 2016, a phase II clinical trial (NCT02791191), referred to as
the “NAVIGATE-AD” trial, was conducted to evaluate the safety and effects of LY3202626
on brain tau in patients with mild AD [117]. Unfortunately, the “NAVIGATE-AD” trial
was terminated due to the low likelihood of identifying a statistically significant treatment
effect. The results were later published showing that LY3202626, while generally well
tolerated, had no significant effect when compared to placebo [118]. In the same year,
LY3202626 was also dropped from another phase II trial (NCT03367403), referred to as
the “TRAILBLAZER-ALZ”, conducted to evaluate both LY3202626 and Donanemab, a
monoclonal antibody against Aβ, in early symptomatic AD patients [111,119]. In 2022,
LY3202626 is discontinued for AD.

3.11. PF-06751979

PF-06751979 is a small-molecule BACE1 inhibitor, with high BACE1 selectivity com-
pared to BACE2, that was developed by Pfizer [120,121]. Three phase I trials (2015;
NCT02509117, 2016; NCT02793232 and 2017; NCT03126721) were conducted to evalu-
ate the safety, tolerability and pharmaco-kinetics and dynamics of PF-06751979 [122]. The
published results of phase I trials indicate that PF-06751979 was generally well tolerated at
all tested doses and reported adverse events were mild to moderate. The pharmacokinetic
parameters remained consistent across once daily dosing regimens with no notable food
effects and pharmacodynamic analysis showed a concentration-dependent reduction in
CSF and plasma Aβ (the greatest reductions were observed with 275 mg once-daily dos-
ing) [122]. These results were in favor of further clinical development. Nevertheless, in
January 2018, Pfizer announced that they were ending their development lines in neurology,
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including PF-06751979, and thus the drug did not enter further phase II or III trials [120].
As of 2022, the drug holds the discontinued status for AD.

3.12. CTS21166

CTS21166 is a BACE1 inhibitor developed by CoMentis in partnership with Astellas
Pharma [123]. In APP-transgenic mice, CTS21166 was able to significantly lower Aβ

level and deposition [123]. Only one registered phase I trial (NCT00621010) was found,
conducted back in 2008 to evaluate the safety and tolerability of CTS21166 in healthy male
volunteers [124]. However, neither the results of the trial nor records of further human
studies were found.

3.13. HPP854

HPP854 is a BACE1 inhibitor developed by High Point Pharmaceuticals, LLC. [125].
No record of preclinical studies investigating HPP854 was found. Only one 2011 regis-
tered phase I trial (NCT01482013) was found; conducted to evaluate the safety, tolerability
and pharmaco-kinetic and dynamic relationships as well as CSF and plasma concentra-
tions [125]. Nonetheless, neither the results of the trial were posted/published nor were
records of further human studies found.

4. Discussion and Future Perspectives

The past decade was full of hopes and dreams of finding disease-modifying therapies
for AD, especially with a number of BACE1 inhibitors advancing in clinical trials; however,
what happened can be described as a graveyard for BACE1 inhibitors. In addition, it
appears that pharmaceutical companies have actually abandoned BACE1 inhibitors for
good, as not a single BACE1 inhibitor is currently listed in any company’s pipeline for
experimental or clinical development.

The overwhelming failure of BACE1 inhibitors and its sister group, γ-secretase in-
hibitors, [126] has further supported the notion of abandoning, as described, the outdated
“Amyloid Cascade Hypothesis” as a whole, since targeting Aβ production did not initially
seem to be a feasible option for AD when it was put to the test in human studies [127]. Nev-
ertheless, the hypothesis itself was not completely abandoned and various other Aβ-related
drugs have progressed into clinical trials. For instance, Aβ anti-aggregates, Aβ transport
enhancers, Aβ vaccines and passive immunization therapies against Aβ, were all candi-
dates for AD and progressed into clinical studies [4]. Thereafter, and on its 30th anniversary,
the “Amyloid Cascade Hypothesis” with its massive impact has celebrated its first success
with the FDA approval of Aducanumab (sold under the brand name Aduhelm®) [128].
Aducanumab is an anti-Aβ monoclonal antibody, which was approved for the use in
AD patients with mild cognitive impairment or mild dementia stage of the disease [129].
Aducanumab, a human immunoglobulin gamma 1 (IgG1) monoclonal antibody, exerts
its mechanism of action via crossing the BBB and selectively binding aggregated soluble
oligomers and insoluble fibril conformations of Aβ plaques in the brain [129]. However,
much like BACE1 inhibitors, anti-Aβ antibodies had a long history of failures in clinical
trials prior to the success of Aducanumab. For example, AAB-001 (Bapineuzumab), AAB-
003 (PF-05236812), GSK933776 and LY2062430 (Solanezumab) all have failed due to lack of
efficacy [130]. On the other hand, Aducanumab succeeded and other anti-Aβ antibodies
are still in clinical phases holding hopes for more AD therapies.

Projecting the success of the anti-Aβ antibody Aducanumab to the case of BACE1
inhibitors may intrigue the revitalization of a newer generation BACE1 inhibitors that
are efficacious and able to tackle safety issues of the older generation. For instance, one
of the issues (i.e., hypopigmentation) was actually solved through selectively inhibiting
BACE1 without interaction with BACE2. Until then, extensive research should be done
to determine the underlying mechanisms linking BACE1 inhibition to the previously
reported adverse events, and whether solely inhibiting BACE1 would be sufficient enough
to produce sustained efficacy.
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While this review has focused mainly on one research arm of AD therapies, it is
worth to note and appreciate the ongoing extensive experimental and clinical research
efforts aiming for the development of novel AD therapies, including medicinal plants and
natural products [131], tau-targeted therapies [132], neurotransmitter modulators [133],
neurotrophic factors [134], insulin sensitizers [135], dietary supplementation [136], proce-
dural interventions [137] and numerous other therapy approaches.
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