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Abstract—Integrating the Internet of Things (IoT), Artificial
Intelligence and big data analytics in Industry 4.0 has revo-
lutionized industrial processes, enabling enhanced operational
efficiency, predictive maintenance, and innovation. However, the
increasing volume of sensitive and decentralized data generated
by Industrial IoT (IIoT) devices introduces significant challenges,
including data fragmentation, privacy concerns, and interoper-
ability issues. Traditional centralized data analysis methods often
fail to address these challenges effectively. This paper proposes a
novel privacy-preserving federated learning framework tailored
for IIoT environments to bridge these gaps. The framework
enables secure and decentralized distributed big data analysis
while ensuring data sovereignty and minimizing communication
overhead. The proposed approach enhances predictive mainte-
nance and anomaly detection by integrating advanced deep learn-
ing models with edge-fog-cloud architectures, fostering cross-
company collaboration and scalability. Experimental evaluations
using real-world predictive maintenance datasets demonstrate the
framework’s effectiveness in achieving high accuracy, optimized
resource utilization, and reduced runtime. Additionally, incor-
porating clustering techniques improves model personalization,
enhancing performance without compromising data privacy. This
research establishes FL as a transformative solution for secure,
collaborative intelligence in Industry 4.0 ecosystems, paving the
way for sustainable and intelligent manufacturing environments.

Index Terms—Big data, federated learning, Industry 4.0, IoT,
predictive maintenance, privacy preservation

I. INTRODUCTION

Industry 4.0 represents a transformative era in manufac-
turing and industrial processes, driven by integrating digital
technologies such as the Internet of Things (IoT), Artificial
Intelligence (Al), and big data analytics [1]. This industrial
revolution builds on the foundation of automation and smart
systems to enhance efficiency, productivity, and sustainability.
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At the core of Industry 4.0 is the convergence of physical
and digital domains, enabling real-time data collection, ad-
vanced analytics, and intelligent decision-making [2]. With
interconnected devices and systems, businesses can optimize
operations, reduce costs, and deliver higher-quality products
and services. This paradigm shift is not just about adopt-
ing advanced technologies; it’s about reimagining traditional
industrial practices to meet the demands of a fast-evolving
global market. The IoT is pivotal in realizing Industry 4.0, the
backbone of interconnected industrial systems [3]. [oT enables
devices, sensors, and machines to communicate seamlessly,
creating a cohesive ecosystem that facilitates real-time moni-
toring, predictive maintenance, and automation. loT empowers
manufacturers to gather vast amounts of data from machinery,
production lines, and supply chains in industrial settings [4].
This data provides valuable insights into operational per-
formance, equipment health, and workflow optimization. By
bridging the physical and digital worlds gap, IoT enhances
operational efficiency and fosters innovation in smart facto-
ries, intelligent supply chains, and advanced manufacturing
processes.

The immense data generated by IoT devices in Industry
4.0 brings unprecedented innovation opportunities but poses
significant challenges [1]. Privacy concerns, data silos, and
high computational costs often constrain traditional central-
ized approaches to data analysis. Big data-enabled federated
learning emerges as a transformative solution [5], allowing
organizations to collaboratively analyze decentralized datasets
without compromising security or privacy. Federated learning
leverages edge devices and distributed computing to enable
secure, privacy-preserving data sharing and processing across
multiple stakeholders [6]. This approach is particularly criti-
cal in industrial ecosystems, where sensitive data ownership
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and regulatory compliance are paramount. Incorporating big
data-enabled federated learning into Industry 4.0 frameworks
provides a secure and scalable pathway for achieving collabo-
rative intelligence. By enabling multiple stakeholders—such as
manufacturers, suppliers, and operators—to share insights de-
rived from distributed datasets, federated learning helps over-
come the challenges of data silos and fragmented information.
This collaborative model enhances predictive maintenance,
anomaly detection, and resource optimization and fosters in-
novation through cross-company partnerships. Integrating big
data and federated learning ensures that industrial IoT systems
remain robust, secure, and adaptable, paving the way for future
sustainable and intelligent factories.

Figure 1 illustrates the integration of the IoT and the
Industrial Internet of Things (IIoT) within the context of
Industry 4.0 [7]. It highlights various applications across
sectors such as mining, catering, food, textiles, automobiles,
and electronics. The figure also showcases the role of IoT in
traffic management, personal area networks, sensor networks
in mechanics, factory area networks, and intelligent transporta-
tion systems. These interconnected systems facilitate more
innovative operations, enhanced automation, and real-time
monitoring, contributing to transforming industrial processes
and everyday services.
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Fig. 1. Applications of IoT and IIoT in Industry 4.0

The vast amount of data generated by industrial IoT de-
vices remains fragmented across stakeholders due to privacy
concerns, data ownership issues, and security challenges [8]
[9] [10]. This fragmented data landscape limits the potential
of collaborative intelligence, which is essential for predictive
maintenance, anomaly detection, and resource optimization
in smart factories. Big data-enabled federated learning is a
promising solution to address these challenges, enabling secure
and decentralized data analysis without exposing sensitive
information. By facilitating cross-company collaboration and
ensuring data privacy, this approach can unlock the true value
of IoT data, fostering innovation, improving efficiency, and
driving the sustainable growth of Industry 4.0 ecosystems.

Federated Learning addresses the challenges of data privacy,
fragmentation, and interoperability in Industry 4.0 by enabling
decentralized Al model training across IoT devices without
sharing sensitive data. As IoT devices in smart factories,
industrial systems, and transportation networks generate vast
amounts of big data, FL facilitates collaborative learning
by allowing local models to be trained on distributed data

and aggregated into a global model. This approach ensures
privacy-preserving analysis, fosters cross-company collabora-
tion and optimizes predictive maintenance and fault detection
processes. By bridging big data, IoT, and AI, FL enables
smart and secure solutions critical to realizing the full potential
of Industry 4.0. Figure 2 illustrates the Federated Learning
architecture, where IoT devices such as smartphones, mobile
computers, and smart vehicles collaboratively train local mod-
els on their local data while ensuring privacy and sharing only
model updates with a central federated server for global model
aggregation and distribution.
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Fig. 2. Architecture of Federated Learning

Figure 3 presents the key research challenges in imple-
menting Federated Learning in Big Data environments. These
challenges include system and data heterogeneity, statistical
variability, communication bottlenecks, privacy concerns, and
potential security risks like membership inference attacks and
poisoning issues. Additionally, the figure highlights algorith-
mic limitations, autonomy-related dilemmas, and efficiency
bottlenecks that hinder large-scale adoption of federated learn-
ing across diverse and decentralized networks.
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Fig. 3. Research Issues in Big Data and Federated Learning

The main objectives of this paper are as follows:

« To develop a privacy-preserving federated learning frame-
work that enables cross-company collaboration within
Industrial IoT systems, ensuring secure and decentralized
big data analysis without compromising sensitive infor-
mation.

o To address the fragmentation of industrial data by cre-
ating a federated data space that adheres to principles
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such as interoperability, data sovereignty, and security,
enabling the sharing and collaborative use of big data
across multiple stakeholders in Industry 4.0.

o To evaluate the proposed framework through predictive
maintenance and condition monitoring use cases, demon-
strating its ability to enhance AI model performance,
reduce data silos, and optimize industrial processes using
distributed edge-fog-cloud architectures.

The organization of this paper is as follows: Section II
presents a comprehensive review of related work, highlighting
existing solutions, their limitations, and the research gaps
addressed by this paper. Section III describes the proposed
privacy-preserving federated learning framework tailored for
IIoT environments, integrating advanced deep learning mod-
els with edge-fog-cloud architectures to enable secure and
scalable data analysis. Section IV details the experimental
evaluations and analysis, demonstrating the effectiveness of
the proposed framework through predictive maintenance and
anomaly detection use cases, along with performance compar-
isons against state-of-the-art methods. Section V concludes the
paper by summarizing the findings, emphasizing the contribu-
tions of this research, and outlining future research directions
to address challenges in large-scale federated learning deploy-
ments.

II. RELATED WORK

FL has emerged as a highly effective solution for developing
secure and cost-efficient IIoT applications. By enabling the
integration of large datasets and computational resources from
diverse IIoT devices, FL facilitates the training of Al models
while preserving data privacy. This approach significantly
enhances the quality of IIoT training data, which is often
unattainable using traditional Al methods.

As described in [11], data is initially generated by IoT
devices across various smart industries and transmitted to an
IoT sink. The sink serves as a repository that collects data
from multiple IoT nodes within the sector via wired and
wireless communication channels while encrypting the data
before sending it to a centralized server. The server then ag-
gregates the information from multiple IoT sinks and federates
the data. Finally, the smart industry decrypts the aggregated
knowledge into a comprehensible format. Both eavesdropping
and hacking attempts are mitigated in this process, as the data
remains encrypted throughout the transmission and storage
stages.

Integrating deep learning models with IoT and edge devices
has recently gained significant popularity, enabling real-time
analytics with limited resources [12]. Federated Deep Learning
empowers Industry 4.0 companies to incorporate deep learning
into IoT devices while ensuring a secure framework through
Federated Learning, as illustrated in Figure 4. The primary
objective of FDL is to equip IIoT systems with advanced
capabilities using optimized DL models, thereby transforming
Industry 4.0 factories into smart, efficient, and intelligent
manufacturing environments.
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Fig. 4. Fedrtaed Learning in IIoT

Lim et al. [13] highlighted various security threats, which
FDL effectively addresses by sharing deep learning models
from the cloud to end devices. Security and privacy concerns
can be mitigated through data encryption [55]. However,
IToT-based systems still face challenges related to security
and privacy during data processing and analytics. The core
principle of FDL involves training local deep learning models
on localized data and exchanging parameters such as weights
and biases of the neural network. These updates are periodi-
cally shared between local nodes to generate a global model
collaboratively without exposing the underlying data to the
cloud. On the server side, security issues arise from sharing DL
models on the cloud, posing confidentiality and data security
risks. On the client side, data encryption ensures that sensitive
information remains secure during training before it is trans-
mitted to the cloud server. Techniques such as Homomorphic
Encryption further regulate and protect the amount of data
shared, thereby addressing these security concerns effectively.

Given end devices’ limited memory and computational
capabilities, deep learning models must be optimized to enable
efficient deployment on IloT and edge devices. Optimizing DL
models across IIoT nodes reduces memory and computational
requirements, enhancing overall system performance. GPUs
provide low-power computation for hardware optimisation,
significantly reducing processing time, while devices like
FPGAs and Google’s TPU [14] further accelerate DL network
processing. In terms of memory optimization, techniques such
as shared memory allocation algorithms can be applied to
improve efficiency. Additionally, dynamic scheduling [15]
is critical in enhancing performance on cloud servers. Re-
searchers [16] - [19] have recently proposed DL models
integrated with Federated Learning for IIoT networks across
various applications, including automobiles, mobile networks,
traffic systems, and image processing.

III. PROPOSED MODEL

To address the challenges of fragmented data, privacy
concerns, and the need for scalable Al solutions in IIoT envi-
ronments, this paper presents a novel privacy-preserving fed-
erated learning framework tailored for predictive maintenance
and collaborative industrial applications. However, large-scale
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deployments of FL introduce critical challenges such as
system heterogeneity and communication bottlenecks, which
can significantly impact model performance and scalability.
System heterogeneity arises due to the diverse hardware and
software configurations across industrial IIoT devices, leading
to variations in computational power, memory constraints,
and data distributions. To mitigate these effects, adaptive
federated learning techniques, including model compression,
personalized FL, and asynchronous updates, can be employed
to tailor model training to each device’s capabilities.

The proposed model integrates advanced deep learning tech-
niques with federated learning to enable secure, decentralized
analysis of distributed big data across multiple stakeholders.
By leveraging edge-fog-cloud computing architectures, the
model efficiently extracts meaningful insights while maintain-
ing data sovereignty and minimizing communication costs.
This approach ensures that sensitive industrial data remains
localized while only model updates are shared for global ag-
gregation. The proposed model enhances predictive accuracy,
anomaly detection, and resource optimization in Industry 4.0
ecosystems, fostering cross-company collaboration and driving
innovation in smart manufacturing.

The proposed Federated Learning algorithm, depicted in Al-
gorithm 1, addresses the challenge of decentralized data anal-
ysis within IIoT environments. As industrial systems generate
vast amounts of sensitive data, traditional centralized machine-
learning approaches face significant privacy concerns, regula-
tory restrictions, and high communication costs. To overcome
these issues, the algorithm employs a federated learning frame-
work that allows multiple participants (e.g., factories or edge
devices) to train a global Al model collaboratively without
sharing their raw data. Instead of transferring datasets to a
central server, participants train locally on their data and share
only model updates (parameters) with the server, ensuring data
privacy and ownership.

Initialization and model distribution:

The algorithm begins with an initial global model #°, shared
by a central server with all participating clients (e.g., industrial
IoT devices or factories). Each client holds its local dataset
D;, which remains private throughout the training process.
This initialization phase sets the foundation for decentralized
training, where the clients will update the global model based
on their individual data distributions. This method ensures
that sensitive information, such as proprietary machine data
or operational metrics, is never exposed.

Local training on participants’ devices:

In each training round ¢, the global model §*~! is distributed
to all participants. Each participant independently trains the
model on its local dataset D; using an optimization algorithm
such as Stochastic Gradient Descent (SGD) or Adam. The
local model updates 6! are computed based on the loss
function, typically designed to minimize prediction errors in
failure detection or maintenance tasks. Since each client trains
on its local data, this step preserves privacy and mitigates risks
associated with centralized data collection, such as breaches
or leaks.

Algorithm 1 Federated Learning for Predictive Maintenance

Dataset D split into IV participants with privacy-sensitive data.
Central server for model aggregation.

Local datasets D; fori=1,2,...,N.

Initial global model 6°.

Trained global model 6*.

procedure FEDERATEDLEARNING(A?)
for t =1,2,...,T do {Iterate for T' global rounds}
Distribute global model 6%~ to all clients.
for each client ¢ in parallel do
Perform local training on D; using 6%~ 1.
Update local model 6? via local optimization.

end for
Aggregate local models {0¢} on the server:
1 XN
0'=—> "0 (1
N3
end for
return 97

end procedure

procedure EVALUATION(6*)
Use 6* for predictive maintenance:
Predict failure probabilities over H historical data points.
Validate results against failure events over prediction window h.
end procedure

Model aggregation at the server:
Once local training is complete, participants return their model
updates (weights and biases) to the central server. The server
aggregates these updates to compute an improved global model
0t. The aggregation process uses a weighted average of all the
local model updates:

t 1 al t
0 =50 @)
=1

Here, N represents the total number of participants, and 6!
corresponds to the local model from each client. This step
ensures that the global model benefits from the collective
intelligence of all participants without accessing their raw data.
The iterative nature of this process allows the global model to
converge toward an optimal solution over multiple rounds 7T'.

Model evaluation and application:

After T training rounds, the final global model #” is obtained.
This trained model is evaluated for predictive maintenance
tasks like failure prediction and condition monitoring. The
model takes historical input data (e.g., sensor readings or
machine performance metrics) and predicts potential failures
within a specified time window. By leveraging federated
learning, the model can generalize well across industrial
participants, ensuring accurate and reliable predictions while
maintaining data privacy.

The proposed deep learning model, illustrated in Algorithm
2, combines Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) layers to address the challenges
of predictive maintenance in IloT systems. The model is de-
signed to leverage both the spatial and temporal characteristics
of the input data, ensuring robust and accurate failure pre-
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diction. CNN layers extract meaningful spatial features from
the historical input data, while LSTM layers capture temporal
dependencies critical for identifying trends and anomalies.
These features are integrated and processed through dense
layers to predict the probability of failure, enabling proactive
maintenance and reducing operational downtime. The step-
by-step methodology of the proposed model is detailed in
Algorithm 2.

Algorithm 2 Proposed Deep Learning Model for Failure
Prediction

Input data X € REX9X1 where H is the history window size.
Predicted failure probability for the next time window.

procedure FAILUREPREDICTION(X)
Step 1: Feature Extraction with CNN
Initialize convolutional channels C' = {2, 4, 6, 8}.
for c € C do
Apply Conv2D(X, filters=c).
Apply Batch Normalization.
Apply ReLU Activation.
Apply Average Pooling.
end for ,
Obtain feature maps F' € R® %8,

Step 2: Sequential Feature Extraction with LSTM
Pass input X to LSTM(20) — Output L;.
Pass F' to Bidirectional LSTM(16) — Output Lo.

Step 3: Dense Layer Processing

Flatten F' — Friq4.

Concatenate L1, L2, and Fyiq¢ — Ceoncat-

Pass Ceoncat through:
Dense(16) with ReLU activation.
Dense(4) with ReLU activation.
Dense(1) with Sigmoid activation.

Step 4: Prediction
Output: Predicted failure probability Yy, cq.
end procedure

Feature Extraction with CNN:
The first step of the proposed model focuses on extract-
ing features from the input data X € RP*9%1 where H
represents the history window size. Multiple convolutional
layers are applied iteratively with increasing channel sizes
C = {2,4,6,8} to achieve this. For each channel ¢ € C,
the following operations are performed sequentially:

1) Apply a 2D Convolution operation with ¢ filters to
extract spatial features.

2) Perform Batch Normalization to normalize feature
maps and improve training stability.

3) Use the ReLU activation function to introduce non-
linearity into the network.

4) Apply Average Pooling to reduce the dimensionality of
feature maps.

These operations are repeated for each channel size, and
the resulting feature maps F' € R*' %8 are obtained for further
processing.

Sequential Feature Extraction with LSTM:

The model incorporates LSTM layers to capture temporal

dependencies in the input data. This step processes both the
original input X and the extracted CNN features F:

e The input X is passed to an LSTM layer with 20 units,
producing an output L.

o The feature maps F' are processed using a Bidirectional
LSTM layer with 16 units, resulting in an output L.

The LSTM layers are designed to analyze the sequential nature
of the data, enabling the model to capture temporal patterns
critical for predictive maintenance.
Dense Layer Processing:
To integrate the extracted spatial and sequential features, the
model flattens the feature maps F' into a one-dimensional
vector Fp,. These features are concatenated with the outputs
Ly and Lo from the LSTM layers:

Ceoncat = Concatenate(Lq, Lo, Fyy) 3)

The concatenated features Ceoneae are passed through a series
of fully connected (Dense) layers to refine the predictions:

1) A Dense layer with 16 units and ReLU activation.

2) A Dense layer with 4 units and ReLU activation.

3) A final Dense layer with 1 unit and Sigmoid activation
to produce the failure probability.

Prediction :
The output of the final Dense layer represents the predicted
failure probability Yjeq, which is given as:

}/pred = Singid(Cconcat) 4)

This probability indicates the likelihood of a failure occur-
ring within a specified time window based on the input data.

The proposed deep learning model combines CNN for
spatial feature extraction, LSTM layers for sequential analysis,
and Dense layers for prediction. By leveraging both spatial and
temporal features, the model achieves robust and accurate fail-
ure prediction, making it suitable for predictive maintenance
tasks in Industrial IoT environments.

IV. EXPERIMENTS AND ANALYSIS

In this section, we assess the effectiveness of the proposed
collaborative framework by implementing a novel FL-based
predictive maintenance approach. As a key application of
CCM, predictive maintenance focuses on forecasting potential
future defects or failures in equipment to determine the optimal
timing for maintenance activities. The proposed framework is
evaluated under two scenarios:

o Scenario I: Assumes full participant trust, enabling cen-
tralized data sharing for model training.

o Scenario II: Focuses on collaborative model training
using Federated Learning, where participants retain data
privacy due to a lack of mutual trust.

We utilized an open predictive maintenance dataset from
one of Schwan’s factories 55. The dataset comprises three dis-
tinct sections covering a total of 100 machines. The experiment
was conducted on a system with the following computational
platform specifications, as detailed in Table I.
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TABLE I
HARDWARE SPECIFICATIONS
Component Specification
CPU Intel(R) Core 17-10750H @ 2.60 GHz
RAM 32 GB
GPU NVIDIA GeForce RTX 3060
Operating System | Ubuntu 20.04

The results in Figure 5 demonstrate a clear relationship
between the history window size and the model’s perfor-
mance metrics, including accuracy, recall, precision, and the
corresponding runtime. Increasing the history window size
allows the model to access more historical data, enhancing its
ability to learn complex patterns and trends associated with
equipment behaviour. This results in significant improvements
in predictive performance, as reflected in the higher accuracy
and precision values. The model’s consistently high recall
indicates its effectiveness in detecting potential equipment
failures and minimizing false negatives—a critical aspect of
predictive maintenance where missed failures can lead to
costly operational downtimes or system breakdowns. How-
ever, the performance gains achieved through larger history
windows come with a notable increase in runtimes. The larger
the history window, the greater the volume of input data
the model must process, which demands more computational
resources and time for training. While smaller history windows
offer faster runtimes and lower resource consumption, they
result in comparatively lower predictive performance due to
the limited amount of historical information available to the
model. This trade-off between accuracy and computational ef-
ficiency becomes a key consideration for practical deployment
in industrial IoT environments, where real-time analysis and
resource constraints are often critical.

Normalized Performance Metrics for Deep Learning Model (Scenario I)

The results in Figure 6 demonstrate that in Scenario II, using
the Federated Learning method significantly reduces runtime
as the number of clients increases. This reduction is achieved
by splitting the data among clients, which decreases the
computational load for each client, leading to faster training.
However, this data distribution slightly decreases accuracy

Normalized Values (0 to 1)

01

02 | ‘ ‘ | |
o I

t
data-02
data-03
data-04
data-05
data-11
data-12
data-13
data-14
data-22
data-23
data-24
data-25
data-31
data-32
data-33
data-34
data-35

d
9 data-15

& data-21

z

Fig. 5. Results of Scenario 1

because local models are trained on smaller data portions.
While FL provides a scalable framework for distributed learn-
ing, its scalability is not without limitations. As the number
of participants increases, several challenges arise, including
model convergence issues, computational overhead, and trade-
offs between privacy and performance.

Increasing the number of clients can lead to slower conver-
gence due to heterogeneous local data distributions (non-IID
data), which may introduce inconsistencies in model updates.
To mitigate this, advanced aggregation techniques such as
personalized FL and clustered FL can be employed, where
similar data distributions are grouped to enhance learning
effectiveness. Additionally, computational and storage over-
head on edge devices can become a limiting factor, particu-
larly for resource-constrained IIoT devices. Techniques such
as federated dropout and adaptive learning rates help opti-
mize resource utilization while maintaining model accuracy.
Furthermore, with more participants, ensuring privacy while
maintaining high model performance becomes challenging.
Privacy-enhancing techniques like differential privacy and
secure multi-party computation introduce additional computa-
tional complexity, requiring a careful balance between security
and efficiency. By considering these scalability limitations, FL
can be better adapted to large-scale IIoT applications, ensuring
robustness and efficiency in industrial deployments.

Despite this, the reduction in accuracy is minimal and
remains within acceptable limits, making Federated Learning
a viable option when data privacy is a priority. Furthermore,
the results show that as the number of clients increases
beyond 7 to 19, the rate of change in accuracy becomes
shallow. This indicates that the performance stabilizes, even
with more clients participating in the training process. This
scalability highlights Federated Learning’s robustness, as it
can efficiently balance privacy, computational efficiency, and
model performance. Overall, Federated Learning is an effec-
tive solution for collaborative model training, ensuring reduced
runtime and acceptable accuracy trade-offs while preserving

data confidentiality.

Fig. 6. Results of Scenario 2
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The results in Figure 7 represent the scenario where none
of the clients participate in the Federated Learning process.
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Instead, each client trains their model using only local data.
For this analysis, the dataset was split into ten parts, with each
client using a distinct subset of the data for training. While
the proposed method is flexible and could accommodate a
different number of clients, this choice does not affect the
general trend or the conclusions drawn from the experiment.
As shown in Figure 7, the accuracy of the models trained
on local data is lower compared to the global model trained
through the FL process. This is primarily because local models
lack access to the entire dataset, limiting their ability to
generalize and learn comprehensive patterns. Additionally, the
variation in performance across clients indicates a dependency
on the quality and size of the data available to each client.
Some clients may achieve higher accuracy due to better-quality
local data, while others may perform poorly if their subsets
lack diversity or are insufficiently representative.

Despite these limitations, the results demonstrate that local
data training offers a privacy-preserving alternative, as data
remains decentralized and never leaves the client’s control.
However, this approach sacrifices overall model performance
in favour of privacy. These findings emphasize the importance
of collaborative learning in achieving more robust and accurate
models, as Federated Learning enables the aggregation of in-
sights from distributed datasets without compromising privacy.
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Fig. 7. Results of Clustered Federated Learning with K-Means Clustering for
Model Training (No. of Clusters = 1-5

Figure 8 illustrates the impact of the clustering technique
and the number of clusters (K) on the performance of the
Federated Learning model. The results highlight that incor-
porating clustering into the FL process allows for model
personalization, which leads to improved overall performance
compared to traditional FL. without clustering. This improve-
ment arises because clustering enables grouping clients with
similar data distributions, allowing the model to tailor its
training to the specific characteristics of each cluster. As
the number of K increases, the model’s performance im-
proves due to more precise personalization. By focusing on
smaller, more homogeneous subsets of clients, the model can
learn more effectively from localized patterns and variations
within the data. However, the extent of improvement tends
to diminish as K reaches higher values, indicating that there

is a balance between achieving better personalization and
maintaining sufficient data diversity within each cluster. These
findings underscore the effectiveness of clustering techniques
in Federated Learning, as they enhance model accuracy and
generalization while preserving the benefits of data privacy

and decentralization.
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Fig. 8. Results of Federated Learning
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V. CONCLUSION

This paper presents a comprehensive approach to address-
ing the challenges of data privacy, fragmentation, and in-
teroperability in IIoT environments, particularly in Industry
4.0. By leveraging a privacy-preserving Federated Learning
framework, this research demonstrates the feasibility of se-
cure, decentralized data analysis across multiple stakeholders
while maintaining data sovereignty and reducing communica-
tion overhead. The proposed framework integrates advanced
deep learning techniques with edge-fog-cloud architectures,
enabling predictive maintenance, anomaly detection, and re-
source optimization in industrial ecosystems. Experimental re-
sults highlight the framework’s effectiveness in achieving high
predictive accuracy, scalability, and efficiency while ensuring
robust data privacy. Using clustering techniques within the
FL process further enhances model personalization, enabling
localized insights and improved generalization across diverse
IIoT environments. This capability underscores FL’s potential
to foster collaboration and innovation among industrial stake-
holders without compromising sensitive data.

Despite its promising results, this study also identifies areas
for further research, including addressing challenges related
to system heterogeneity, communication bottlenecks, and the
computational costs associated with large-scale FL deploy-
ments. Future work will focus on refining the framework to
enhance its adaptability and robustness, exploring advanced
optimization techniques, and incorporating real-time analytics
for dynamic IIoT environments. In conclusion, this research
establishes Federated Learning as a transformative enabler for
secure and collaborative intelligence in Industry 4.0, paving
the way for the next generation of smart, sustainable, and
efficient industrial systems.
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