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Abstract—This study investigates the application of adaptive
decision tree models for predicting student performance, focusing
on their role in educational data mining and adaptive learning. A
major challenge in student assessment is identifying at-risk learn-
ers and dynamically adjusting predictive models to accommodate
evolving learning patterns. Traditional static models often fail
to capture these variations, highlighting the need for adaptive
approaches. This research develops an adaptive decision tree
framework that integrates incremental learning and adaptive
parameter tuning to improve predictive accuracy and stability.
Using the Student Performance dataset from the UCI Machine
Learning Repository, the study applies multiple decision tree
variants, including C4.5, CART, Random Forest, and Gradient
Boosted Trees. The dataset, consisting of demographic, social,
and academic attributes of students, is preprocessed and split
into 70% training and 30% testing sets. Models are evaluated
using accuracy, precision, recall, and F1-score to assess their
effectiveness. The results demonstrate that adaptive decision
tree models significantly outperform static models, with the
best adaptive model (Gradient Boosted Decision Trees) achiev-
ing an accuracy of 84% and an F1-score of 82%, compared
to 77% and 74%, respectively, for static counterparts. These
findings highlight the potential of adaptive learning models to
enhance personalized learning interventions and support data-
driven curriculum design. This paper concludes by discussing the
implications of adaptive decision tree applications in real-world
educational settings and proposes future directions for improving
predictive modeling in adaptive learning environments.

Index Terms—Adaptive Learning, Student Performance Pre-
diction, Decision Trees, Machine Learning, Educational Data
Mining.

I. INTRODUCTION

The increasing availability of digital educational data and
the widespread adoption of learning management systems have
led to significant growth in Educational Data Mining (EDM),
enabling institutions to derive insights into student learning
patterns and academic performance [1]. Predicting student

success is a crucial aspect of EDM, as it allows educators to
implement timely interventions, improve personalized learn-
ing, and enhance curriculum design [2]. However, despite
the advancements in machine learning, accurately forecasting
student outcomes remains challenging due to temporal shifts
in learning behaviors, contextual variations, and the evolving
nature of academic performance.

Decision tree-based machine learning models have been
widely adopted for classification and prediction tasks in educa-
tion due to their interpretability, robustness, and computational
efficiency [3]. Traditional models such as C4.5 and CART have
been used to identify at-risk students, predict test performance,
and assess dropout risks. More recent methods, including
Random Forest and Gradient Boosted Trees, have further
improved predictive accuracy by leveraging ensemble learning.
However, a major limitation of these approaches is their static
nature—once trained, they rely on predefined features and
parameters that may not adapt to evolving educational data.
Student performance is dynamic, influenced by factors such
as curriculum changes, pedagogical interventions, external
circumstances, and student engagement levels. Traditional
models fail to capture these variations over time, leading to
performance degradation and reduced reliability in long-term
applications [4].

State-of-the-art research in EDM has begun to explore
adaptive learning techniques to overcome these challenges.
Incremental learning methods, which allow models to update
dynamically as new data becomes available, have shown
promise in handling concept drift—a phenomenon where the
underlying data distribution changes over time. However,
existing adaptive approaches primarily focus on deep learning
models, which, despite their high accuracy, often suffer from
a lack of interpretability and require large datasets. This

2025 1st International Conference on Computational Intelligence Approaches and Applications (ICCIAA)

979-8-3315-2365-7/25/$31.00 ©2025 IEEE



study addresses this gap by integrating adaptive learning
mechanisms into decision tree models, enabling them to adjust
dynamically to evolving student performance patterns while
maintaining model transparency and efficiency [5].

This research proposes an adaptive decision tree framework
that incorporates incremental learning and adaptive parameter
tuning to improve predictive accuracy and model stability
in educational settings. By evaluating multiple decision tree
variants (C4.5, CART, Random Forest, and Gradient Boosted
Trees) and implementing adaptive mechanisms, this study aims
to bridge the gap between traditional static models and highly
complex deep learning systems. The findings of this research
will contribute to personalized learning strategies, data-driven
decision-making in education, and the development of predic-
tive models that remain effective over time.

The remainder of this paper is organized as follows: Section
II reviews related work in educational data mining and deci-
sion tree modeling. Section III details the dataset, preprocess-
ing, and feature engineering steps. Section IV describes the
proposed adaptive model framework, including the algorithms
and adaptive mechanisms employed. Section IV presents ex-
perimental results, while Section V discusses the findings and
limitations. Section VI concludes the paper and outlines future
research directions.

II. LITERATURE REVIEW

Educational data mining (EDM) has evolved significantly,
leveraging machine learning techniques to predict student
performance and enhance personalized learning strategies.
Previous studies have primarily focused on feature-based
modeling, dropout prediction, and performance classification
using machine learning approaches such as logistic regression,
support vector machines (SVMs), and deep learning tech-
niques [6]–[8]. While these methods have achieved notable
success, they often present trade-offs in terms of interpretabil-
ity, computational efficiency, and adaptability to changing
learning environments. Predicting academic performance often
involves modeling student test scores, grades, or dropout
probabilities [9]. Earlier research adopted linear regression
and logistic regression models [10], while more recent trends
incorporate machine learning classifiers, including Support
Vector Machines, Neural Networks, and Ensemble methods
[11].In addition, features used for predicting performance
span a broad range, from demographic variables and parental
education levels to attendance records, study habits, and social
interactions [12].

Decision tree models have been widely used in EDM due to
their transparency, ease of implementation, and ability to han-
dle categorical and numerical data. Studies utilizing traditional
decision tree approaches, including C4.5 and CART, have
demonstrated their effectiveness in predicting student success
based on demographic, academic, and behavioral attributes,
and the UCI Student Performance dataset has been utilized
as a benchmark to evaluate the efficacy of different classifi-
cations algorithms [13], [14]. However, these models rely on
static training data, which limits their ability to accommodate

temporal changes in student learning behaviors. Ensemble
methods, such as Random Forest and Gradient Boosted Trees
(GBDT), have been introduced to improve accuracy by re-
ducing variance and overfitting, yet they still suffer from
fixed parameter configurations and do not inherently adapt to
evolving educational datasets [15], [16].

To address the limitations of static models, adaptive learning
approaches have been proposed, particularly in the context
of deep learning and online learning frameworks. Incremental
learning, which allows models to update dynamically as new
data becomes available, has been shown to improve predictive
accuracy in rapidly changing environments [17], [18]. How-
ever, most adaptive models in EDM focus on deep neural
networks (DNNs), recurrent neural networks (RNNs), and
transformers, which, despite their strong predictive capabili-
ties, lack interpretability and require extensive computational
resources [19], [20].

Concept drift, a major challenge in educational datasets,
further complicates student performance prediction. Learning
patterns evolve over time due to curriculum changes, varying
instructional methods, and shifting student engagement. Some
studies have proposed adaptive approaches to mitigate this
issue, such as online learning algorithms and reinforcement
learning models [21]. However, these methods often demand
large-scale datasets and continuous model retraining, making
them impractical for real-time educational applications.

Despite the growing emphasis on adaptive learning in EDM,
few studies have systematically explored adaptive decision
tree models as a middle-ground solution. Adaptive decision
trees can incorporate incremental learning mechanisms while
maintaining transparency and computational efficiency, mak-
ing them a viable alternative to deep learning-based models.
This research builds on prior work by introducing an adaptive
decision tree framework that dynamically adjusts parameters
and integrates incremental updates to handle temporal changes
in student performance data. By comparing multiple decision
tree variants with and without adaptation, this study aims to
demonstrate the advantages of adaptive decision trees over
traditional static models and position them as a practical tool
for real-time student performance prediction.

III. METHODOLOGY

Our proposed framework integrates adaptive learning mech-
anisms into decision tree models to enhance their predictive
accuracy and robustness. The framework comprises four main
components: Data Preprocessing, Base Decision Tree Model,
Adaptive Parameter Tuning, and Incremental Learning. Figure
1 presents a block diagram of the proposed system.

A. Data Preparation

1) Dataset Description: The Student Performance dataset
used in this study is sourced from the UCI Machine Learning
Repository [5]. It includes data from Portuguese secondary
school students, comprising features related to demographic,
social, and academic attributes. The dataset covers two sub-
jects—Mathematics and Portuguese—collected from two dif-
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Fig. 1. Block Diagram of the Proposed Adaptive Decision Tree Framework

ferent schools. For this study, we focus on the Mathematics
dataset, which includes 395 students. Moreover, the dataset
consists of 33 features, including:

• Demographic and Social Attributes: Gender, age, parent’s
education, family relationships, and travel time.

• Academic Attributes: Study time, past exam scores, fail-
ures in previous classes, and weekly alcohol consumption.

• School-Related Factors: Extra educational support, inter-
net access, and attendance to extra paid classes.

The target variable is the final grade (G3), which is a
numeric grade between 0 and 20. For classification purposes,
following prior studies [14], we discretized the G3 score
into three categories: Low (0–9), Medium (10–14), and High
(15–20).

2) Data Preprocessing:

• Missing Values: The dataset is relatively complete, but
any rows with missing values were dropped, resulting in
a final dataset size of 395 complete records.

• Categorical Encoding: Some features, such as school
(binary category) and sex (binary category), were one-hot
encoded. Multi-level categorical features (e.g., parent’s
job, internet access) were also converted into dummy
variables.

• Feature Scaling: Although decision trees are less sensitive
to scaling, we standardized numeric features to facilitate
comparability and improve the stability of incremental
learning steps.

• Class distribution across the three categories (Low,
Medium, High) was slightly imbalanced, with fewer
students in the High category. To address this, we applied
SMOTE (Synthetic Minority Over-sampling Technique)
on the training set to balance the classes [22]. This step
ensures that the decision tree models do not become
biased toward the majority class.

• Splitting Data: The data was split into training (70%) and
testing (30%) sets. Additionally, a validation set (10%
of training data) was extracted for adaptive parameter
tuning. A temporal splitting approach was not strictly nec-
essary as the dataset does not inherently represent a time

series, but we simulate incremental learning scenarios by
feeding data gradually during model updates.

3) Feature Selection: We applied a mutual information-
based feature selection to reduce the dimensionality and
identify the most influential features [23]. Features like past
academic performance (G1, G2), study time, failures, and
parent’s education level emerged as top predictors. A reduced
feature set of 20 attributes was selected to minimize model
complexity without sacrificing predictive performance.

TABLE I
SELECTED FEATURES

Feature Type Description
G1 (Past Grade) Numeric First period grade
G2 (Past Grade) Numeric Second period grade

studytime Numeric Weekly study time
failures Numeric Number of past class failures

famrel (1-5) Numeric Quality of family relationships
Medu Numeric Mother’s education level (0-4)
Fedu Numeric Father’s education level (0-4)

internet Categorical Internet access at home
absences Numeric Number of school absences
schoolsup Categorical Extra educational support

(yes/no)
activities Categorical Extra-curricular activities

(yes/no)
higher Categorical Wants to take higher education

(yes/no)
romantic Categorical With a romantic relationship

(yes/no)
Walc Numeric Weekend alcohol consumption

(1-5)
Dalc Numeric Workday alcohol consumption

(1-5)
Pstatus Categorical Parent cohabitation status (A,T)

traveltime Numeric Home to school travel time (1-4)
age Numeric Age of the student
sex Categorical Gender of the student (F/M)
paid Categorical Extra paid classes (yes/no)

B. Decision Tree Models

We evaluate multiple decision tree variants as our base
model:

• C4.5 Decision Tree: A well-known algorithm that uses
information gain ratio for splitting and handles both
numeric and categorical features [24].

• Classification and Regression Trees (CART): A widely
used algorithm that employs Gini impurity or entropy for
node splitting [25].

• Ensemble Methods: We also consider Random Forest
[26] and Gradient Boosted Decision Trees (GBDT) [27].
These methods combine multiple trees to reduce variance
and potentially improve accuracy.

C. Adaptive Parameter Tuning

Adaptive parameter tuning involves dynamically adjusting
hyperparameters—such as tree depth, minimum samples per
leaf, and learning rate (for ensembles)—in response to model
performance on a validation set. We implement a feedback
loop that regularly evaluates the model on a small, held-out
validation subset. If the performance declines or stabilizes
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below a threshold, the tuner adjusts parameters to explore
different configurations [28]. This process continues until
optimal or stable performance is achieved.

D. Incremental Learning Approach

To simulate real-world scenarios where data arrive con-
tinuously over time, we employ incremental learning. At
scheduled intervals (e.g., after every batch of new student data
or at the end of an academic quarter), the model updates its
parameters with the newly available data. Incremental learning
involves partial fitting of the model, enabling it to incorporate
new patterns without forgetting previously learned information
[29]. This approach is particularly relevant for educational
contexts, where student behavior and learning environments
evolve.

E. Evaluation Metrics

We use accuracy, precision, recall, and F1-score to evaluate
our classification models. To provide more nuanced insights,
we also consider a weighted F1-score to handle class imbal-
ance. Furthermore, we conduct a feature importance analysis
using metrics such as Gini importance or Shapley values to de-
termine which features most strongly influence the predictions
[30].

IV. EXPERIMENTAL SETUP AND RESULTS

The experiments were conducted using Python’s scikit-
learn library on a workstation equipped with an Intel Core
i7 processor and 16GB of RAM. A 10-fold cross-validation
strategy was employed to ensure robustness and minimize the
risk of bias from a single train-test split. Each model was
trained and tested across multiple folds, with performance
metrics averaged to provide reliable evaluations. To evaluate
the adaptive component, incremental learning was simulated
by sequentially feeding batches of 50 students, emulating real-
world data availability. After each batch, model parameters
were tuned, and partial fitting was performed, with perfor-
mance metrics recorded before and after adaptation.

We computed feature importance using Gini importance
from the best-performing model (Adaptive GBDT). Figure 2
lists the top 10 features and their relative importance scores.
Where the past academic performance (G2, G1) and studytime
are the top predictors, consistent with educational intuition.
Parental education levels and absences also significantly influ-
ence final grades

The baseline models included both traditional decision tree
algorithms and ensemble methods. Static C4.5 and CART
decision trees were used without adaptive parameter tuning
or incremental learning mechanisms. Ensemble models, such
as Random Forest and Gradient Boosting Decision Trees
(GBDT), were evaluated using default parameters and trained
on the initial dataset without further adaptation. Furthermore,
adaptive mechanisms were introduced to each base model
to enhance their predictive capabilities. As baselines, we
included:

Fig. 2. Top 10 Features by importance.

• Static C4.5 Decision Tree: No adaptive parameter tuning
or incremental updates.

• Static CART Decision Tree: Similarly, no adaptive mech-
anisms.

• Ensemble Models (Random Forest, GBDT) without
Adaptation: Using default parameters and training on the
initial dataset only.

The Adaptive C4.5 and CART models incorporated incre-
mental learning and parameter tuning. Similarly, the Adaptive
Random Forest and Adaptive GBDT models featured adaptive
parameter adjustments and updates to accommodate incre-
mental data. These enhancements aimed to improve model
accuracy and generalization under dynamic data conditions.

The comparative performance metrics for baseline and
adaptive models are summarized in Table II. The results
reveal a clear advantage for adaptive models over their static
counterparts. While the static GBDT achieved the best perfor-
mance among non-adaptive models (accuracy: 0.77, F1-score:
0.74), the Adaptive GBDT surpassed all other models with an
accuracy of 0.84 and an F1-score of 0.82. Similarly, Adaptive
Random Forest and Adaptive C4.5 demonstrated significant
improvements in precision, recall, and F1-score compared to
their static versions.

TABLE II
PERFORMANCE METRICS OF BASELINE VS. ADAPTIVE MODELS

Model Accuracy Precision Recall F1-score
Static C4.5 0.72 0.70 0.68 0.69
Static CART 0.70 0.68 0.65 0.66
Static Random
Forest

0.75 0.73 0.71 0.72

Static GBDT 0.77 0.75 0.72 0.74
Adaptive C4.5 0.79 0.77 0.76 0.76
Adaptive CART 0.78 0.74 0.75 0.74
Adaptive
Random Forest

0.82 0.80 0.79 0.79

Adaptive GBDT 0.84 0.82 0.81 0.82

These results highlight the benefits of incorporating adaptive
learning techniques, including incremental updates and param-
eter tuning. Adaptive models not only achieved higher accu-
racy but also demonstrated better generalization, making them
well-suited for dynamic and evolving educational datasets.
The findings underscore the potential of adaptive mechanisms
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in enhancing the performance and applicability of machine
learning models in real-world educational settings.

V. DISCUSSION

Decision trees are inherently interpretable, allowing educa-
tional stakeholders to understand how features affect student
performance. The adaptive approach enhances predictive ac-
curacy without compromising interpretability. For instance, an
educator can see that poor study habits (low studytime) and
multiple past failures are strong indicators of low final grades,
prompting targeted interventions.

The adaptive methodology addresses the concept drift that
can occur over the academic year. Changes in the curricu-
lum, teaching strategies, or student demographics may alter
performance patterns. By continuously updating the model as
new student data arrive, the predictive system remains relevant
and accurate. This adaptability is especially useful in online
learning platforms and MOOCs, where cohorts may differ
significantly from one session to another.

Previous studies using static models on the Student Perfor-
mance dataset reported accuracies ranging from 0.65 to 0.78
for various methods [14]. Our adaptive GBDT model achiev-
ing 0.84 accuracy indicates a notable improvement. Integrating
adaptive tuning aligns with recent trends in machine learning
research, where incremental and online learning methods are
sought to maintain model relevance over time [18], [20].

While the results are promising, some limitations merit
consideration:

1) Data Size: The Student Performance dataset is relatively
small and may not capture large-scale educational com-
plexities.

2) Temporal Simulation: We simulated incremental learning
by feeding batches of data. Real-time adaptation would
require a streaming environment.

3) Generality: The model’s performance and adaptive ca-
pabilities may differ when applied to other datasets,
subjects, or educational contexts.

While the results are promising, some limitations merit
consideration. One of the key challenges faced in this study
was the relatively small dataset size, which may not fully
capture the complexities of large-scale educational environ-
ments. Additionally, implementing incremental learning in a
real-time educational setting remains a challenge, as it requires
continuous data availability and robust adaptation mechanisms.
Future research should explore larger datasets and real-time
applications to further validate the effectiveness of adaptive
decision tree models.

In addition, decision tree models have certain limitations
compared to neural network-based approaches. Deep learning
models, such as artificial neural networks (ANNs), recurrent
neural networks (RNNs), and transformer-based models, have
been widely used for student performance prediction due
to their ability to model complex, nonlinear relationships
within educational data [31]. RNNs and Long Short-Term
Memory (LSTM) networks, for example, can effectively cap-
ture sequential patterns in student learning behaviors and

adapt dynamically based on historical data [32]. Transformer-
based architectures, such as BERT and its educational adap-
tations, have demonstrated strong performance in text-based
learning analytics and personalized recommendation systems
[33].However, these neural network-based models require sig-
nificantly larger datasets, extensive hyperparameter tuning, and
high computational resources, making them less feasible for
real-time, low-resource educational environments [34].

Future research could explore hybrid models that inte-
grate decision trees with neural network architectures, such
as combining decision trees with deep learning frameworks
through hybrid ensemble learning or embedding-based feature
engineering, to leverage the strengths of both approaches. This
could help improve predictive accuracy while maintaining a
degree of interpretability for practical educational applications.

VI. CONCLUSION

This study proposed an adaptive decision tree framework
for student performance prediction, integrating incremental
learning and adaptive parameter tuning to enhance predictive
accuracy. The findings demonstrated that adaptive models
significantly outperformed static decision trees, with the Adap-
tive Gradient Boosted Decision Trees achieving the highest
accuracy (84%) and F1-score (82%). These results underscore
the importance of dynamic modeling approaches in educa-
tional data mining, as they allow for real-time adjustments to
shifting student learning behaviors. The study’s implications
extend beyond predictive analytics, providing educators with
actionable insights for personalized learning interventions and
curriculum optimization. However, the research faced limita-
tions, including the relatively small dataset and the simulated
nature of incremental learning, which may not fully capture
real-time educational dynamics. Future research should fo-
cus on applying this framework to larger and more diverse
datasets, implementing real-time adaptation mechanisms in
live educational environments, and exploring hybrid models
that combine decision trees with deep learning techniques
to balance interpretability and predictive power. These ad-
vancements would further improve the robustness and practical
applicability of adaptive learning models in education.
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